Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 31-46, 2024.
Article in English | WPRIM | ID: wpr-1011009

ABSTRACT

Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.


Subject(s)
Humans , RNA, Long Noncoding/genetics , Liver Cirrhosis/genetics , Liver/metabolism , Hepatic Stellate Cells/pathology , MicroRNAs/metabolism , Extracellular Matrix/metabolism , Drugs, Chinese Herbal
2.
Journal of Xi'an Jiaotong University(Medical Sciences) ; (6): 518-524, 2023.
Article in Chinese | WPRIM | ID: wpr-1005817

ABSTRACT

【Objective】 To explore the role and mechanism of TRPC in promoting extracellular matrix (ECM) deposition in rat glomerular mesangial cells (HBZY-1). Methods Immunofluorescence staining was performed to observe the distribution and expression of TRPC1 and TRPC6 in HBZY-1 cells. After AngⅡ stimulation, qRT-PCR and Western blotting were used to detect the mRNA and protein expressions of Gαq/PLCβ4/TRPC signaling pathway main proteins and ECM deposition indicators (α-SMA, collagenⅢ and fibronectin). By silencing the expressions of TRPC1 and TRPC6 by RNA interference, the expressions of ECM deposition indicators were detected. Changes in [Ca2+]i influx were determined through Fluo-4AM Ca2+ imaging. 【Results】 Both TRPC1 and TRPC6 were expressed in HBZY-1, and were mainly located in cell membrane and cytoplasm. After AngⅡ stimulation, Gαq/PLCβ4/TRPC signaling pathway was activated, and the mRNA and protein expressions of Gαq, PLCβ4, TRPC1 and TRPC6 were all increased (P<0.05). [Ca2+]i influx also increased (P<0.01), and the mRNA and protein expressions of ECM deposition indicators (α-SMA, ColⅢ and Fn) were upregulated (P<0.05). Silencing the expressions of TRPC1 and TRPC6 by RNA interference led to decreased [Ca2+]i influx (P<0.05), and downregulated mRNA and protein expressions of ECM deposition indicators in HBZY-1 cells (P<0.05). The results suggested that inhibition of TRPC expressions could inhibit AngⅡ induced ECM deposition in HBZY-1 cells, which might be associated with decreased [Ca2+]i influx. 【Conclusion】 TRPC may be a novel therapeutic target of renal fibrosis.

SELECTION OF CITATIONS
SEARCH DETAIL