Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
The Journal of the Korean Society for Therapeutic Radiology and Oncology ; : 195-202, 1998.
Article in Korean | WPRIM | ID: wpr-185850

ABSTRACT

PURPOSE: In order to obtain basic data for treatment plan in radiosurgery, we measured small fields of 6 MV X-rays and compared the measured data with our Monte Carlo simulations for the small fields. MATERIALS AND METHODS: The small fields of 1.0, 2.0 and 3.0 cm in diameter were used in this study. Percentage depth dose (PDD) and beam profiles of those fields were measured and calculated. A small semiconductor detector, water phantoms, and a remote control system were used for the measurement. Monte Carlo simulations were performed using the EGS4 code with the input data prepared for the energy distribution of 6 MV X-rays, beam divergence, circular fields and the geometry of the water phantoms. RESULTS: In the case of PDD values, the calculated values were lower than the measured values for all fields and depths, with the differences being 0.3 to 5.7% at the depths of 2.0 to 20.0 cm and 0.0 to 8.9% at the surface regions. As a result of the analysis of beam profiles for all field sizes at a depth of 10cm in water phantom, the measured 90% dose widths were in good agreement with the calculated values, however, the calculated penumbra radii were 0.1 cm shorter than measured values. CONCLUSION: The measured PDDs and beam profiles agreement with the Monte Carlo calculations approximately. However, it is different when it comes to calculations in the area of phantom surface and penumbra because the Monte Carlo calculations were performed under the simplified geometries. Therefore, we have to study how to include the actual geometries and more precise data for the field area in Monte Carlo calculations. The Monte Carlo calculations will be used as a useful tool for the very complicated conditions in measurement and verification.


Subject(s)
Radiosurgery , Semiconductors , Water
2.
Journal of the Korean Society for Therapeutic Radiology ; : 285-290, 1995.
Article in Korean | WPRIM | ID: wpr-228733

ABSTRACT

PURPOSE: We compared the calculated percent depth dose curves of 6 MeV electron beam to that of measured to evaluate the usefulness of Monte-Carlo simulation method in radiation physics. MATERIALS AND METHODS: The radiation dose values of 6 MeV electron beam using EGS4 code with one million histories in water were compared values that were measured form the depth dose curve of electron beam irradiated by medical accelerator ML6M. The central exis dose values were calculated according the changing field size, such as 5 X 5, 10 X 10, 15 X 15, 20 X 20 cm2. RESULTS: The value calculated showed a very similar shape to depth dose curve. The calculated and measured value of Dmax at 10 X 10cm2 cone is 15mm and 14mm respectively. The calculated value of the surface radiation dose rate is 65.52% and measured one is 76.94%. The surface radiation dose rate has vaied from 64.43% to 66.99. The calculated values of Dmax are in the range between 15mm and 18mm. The calculated value was fitted well with measured value around the Dmax area, excluding build up range and below the 90% depth dose area. CONCLUSION: This result suggested that the calculation of dose value can be replace the direct measurement of the dose for radiation therapy. Also, EGS4 may be a very convenient program to assess the effect of radiation dose using by personal computers.


Subject(s)
Microcomputers , Water
SELECTION OF CITATIONS
SEARCH DETAIL