Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Chinese Journal of Biotechnology ; (12): 881-897, 2023.
Article in Chinese | WPRIM | ID: wpr-970411

ABSTRACT

Facing the increasingly severe energy shortage and environmental pollution, electrocatalytic processes using electroactive microorganisms provide a new alternative for achieving environmental-friendly production. Because of its unique respiratory mode and electron transfer ability, Shewanella oneidensis MR-1 has been widely used in the fields of microbial fuel cell, bioelectrosynthesis of value-added chemicals, metal waste treatment and environmental remediation system. The electrochemically active biofilm of S. oneidensis MR-1 is an excellent carrier for transferring the electrons of the electroactive microorganisms. The formation of electrochemically active biofilm is a dynamic and complex process, which is affected by many factors, such as electrode materials, culture conditions, strains and their metabolism. The electrochemically active biofilm plays a very important role in enhancing bacterial environmental stress resistance, improving nutrient uptake and electron transfer efficiency. This paper reviewed the formation process, influencing factors and applications of S. oneidensis MR-1 biofilm in bio-energy, bioremediation and biosensing, with the aim to facilitate and expand its further application.


Subject(s)
Bioelectric Energy Sources/microbiology , Biofilms , Electrodes , Electron Transport , Shewanella/metabolism
2.
Chinese Journal of Biotechnology ; (12): 858-880, 2023.
Article in Chinese | WPRIM | ID: wpr-970410

ABSTRACT

Synthetic electroactive microbial consortia, which include exoelectrogenic and electrotrophic communities, catalyze the exchange of chemical and electrical energy in cascade metabolic reactions among different microbial strains. In comparison to a single strain, a community-based organisation that assigns tasks to multiple strains enables a broader feedstock spectrum, faster bi-directional electron transfer, and greater robustness. Therefore, the electroactive microbial consortia held great promise for a variety of applications such as bioelectricity and biohydrogen production, wastewater treatment, bioremediation, carbon and nitrogen fixation, and synthesis of biofuels, inorganic nanomaterials, and polymers. This review firstly summarized the mechanisms of biotic-abiotic interfacial electron transfer as well as biotic-biotic interspecific electron transfer in synthetic electroactive microbial consortia. This was followed by introducing the network of substance and energy metabolism in a synthetic electroactive microbial consortia designed by using the "division-of-labor" principle. Then, the strategies for engineering synthetic electroactive microbial consortiums were explored, which included intercellular communications optimization and ecological niche optimization. We further discussed the specific applications of synthetic electroactive microbial consortia. For instance, the synthetic exoelectrogenic communities were applied to biomass generation power technology, biophotovoltaics for the generation of renewable energy and the fixation of CO2. Moreover, the synthetic electrotrophic communities were applied to light-driven N2 fixation. Finally, this review prospected future research of the synthetic electroactive microbial consortia.


Subject(s)
Microbial Consortia , Synthetic Biology , Electron Transport , Electricity , Biodegradation, Environmental
3.
Chinese Journal of Biotechnology ; (12): 2719-2729, 2023.
Article in Chinese | WPRIM | ID: wpr-981228

ABSTRACT

To investigate the bioelectrochemical enhanced anaerobic ammonia oxidation (anammox) nitrogen removal process, a bioelectrochemical system with coupled anammox cathode was constructed using a dual-chamber microbial electrolysis cell (MEC). Specifically, a dark incubation batch experiment was conducted at 30 ℃ with different influent total nitrogen concentrations under an applied voltage of 0.2 V, and the enhanced denitrification mechanism was investigated by combining various characterization methods such as cyclic voltammetry, electrochemical impedance spectroscopy and high-throughput sequencing methods. The results showed that the total nitrogen removal rates of 96.9%±0.3%, 97.3%±0.4% and 99.0%±0.3% were obtained when the initial total nitrogen concentration was 200, 300 and 400 mg/L, respectively. In addition, the cathode electrode biofilm showed good electrochemical activity. High-throughput sequencing results showed that the applied voltage enriched other denitrifying functional groups, including Denitratisoma, Limnobacter, and ammonia oxidizing bacteria SM1A02 and Anaerolineaceae, Nitrosomonas europaea and Nitrospira, besides the anammox bacteria. These electrochemically active microorganisms comprised of ammonium oxidizing exoelectrogens (AOE) and denitrifying electrotrophs (DNE). Together with anammox bacteria Candidatus Brocadia, they constituted the microbial community structure of denitrification system. Enhanced direct interspecies electron transfer between AOE and DNE was the fundamental reason for the further improvement of the total nitrogen removal rate of the system.


Subject(s)
Denitrification , Wastewater , Anaerobic Ammonia Oxidation , Nitrogen , Oxidation-Reduction , Bioreactors/microbiology , Ammonium Compounds , Bacteria/genetics , Microbiota , Sewage
4.
Chinese Journal of Biotechnology ; (12): 516-534, 2017.
Article in Chinese | WPRIM | ID: wpr-310603

ABSTRACT

Electroactive bacteria, including electrigenic bacteria (exoelectrogens) and electroautotrophic bacteria, implement microbial bioelectrocatalysis processes via bi-directional exchange of electrons and energy with environments, enabling a wide array of applications in environmental and energy fields, including microbial fuel cells (MFC), microbial electrolysis cells (MEC), microbial electrosynthesis (MES) to produce electricity and bulk fine chemicals. However, the low efficiency in the extracellular electron transfer (EET) of exoelectrogens and electrotrophic microbes limited their industrial applications. Here, we reviewed synthetic biology approaches to engineer electroactive microorganisms to break the bottleneck of their EET pathways, to achieve higher efficiency of EET of a number of electroactive microorganisms. Such efforts will lead to a breakthrough in the applications of these electroactive microorganisms and microbial electrocatalysis systems.

5.
Int. j. high dilution res ; 15(1): 10-17, 2016. ilus, graf
Article in English | LILACS | ID: biblio-972904

ABSTRACT

In an effort to improve the electrical properties of the electroactive Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP), we introduced a novel and simple approach to synthesize PVDFHFP composite films by incorporating ultrahigh dilutions of two homeopathic medicines Ferrum metallicum (FM) and Zincum oxidatum (ZO) in different potencies. The homeo-PVDF-composite films (HPCF) were synthesized by simple solution casting technique. XRD, FESEM, FTIR studies were performed to check the presence of nanoparticles in the film. The electrical properties of the HPCF samples get enhanced significantly due to the incorporation of the medicines and the effect increases with the increase in potency of the medicines.


Subject(s)
Homeopathy , Ferrum , Zinc , Nanoparticles , High Potencies , Dielectric Spectroscopy , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL