Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 617-624, 2018.
Article in Chinese | WPRIM | ID: wpr-856790

ABSTRACT

Objective: To investigate the effect of cells in the epimysium conduit (EMC) on the regeneration of sciatic nerve of mice. Methods: The epimysium of the 8-week-old male C57BL/6J enhanced green fluorescent protein (EGFP) mouse was trimmed to a size of 5 mm×3 mm, and prepared in a tubular shape (ie, EMC). Some epimysia were treated with different irradiation doses (0, 15, 20, 25, 30, 35 Gy) to inhibit cells migration. Then the number of migrating cells were counted, and the epimysia with the least migrating cells were selected to prepare EMC. Some epimysia were subjected to decellularization treatment and prepared EMC. HE and Masson staining were used to identify the decellularization effect. Twenty-four C57BL/6J wild-type mice were used to prepare a 3-mm-long sciatic nerve defect of right hind limb model and randomly divided into 3 groups ( n=8). EMC (group A), EMC after cell migration inhibition treatment (group B), and decellularized EMC (group C) were used to repair defects. At 16 weeks after operation, the midline of the regenerating nerve was taken for gross, toluidine blue staining, immunofluorescence staining, and transmission electron microscopy. Results: At 15 days, the number of migrating cells gradually decreased with the increase of irradiation dose. There was no significant difference between 30 Gy group and 35 Gy group ( P>0.05); there were significant differences between the other groups ( P0.05). Conclusion: The cellular components of the epimysium participate in and promote the regeneration of the sciatic nerve in mice.

SELECTION OF CITATIONS
SEARCH DETAIL