Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Chinese Journal of Pathophysiology ; (12): 128-132, 2017.
Article in Chinese | WPRIM | ID: wpr-509064

ABSTRACT

AIM: To investigate the primary culture method for coronary artery smooth muscle cells (CASMCs), and to establish the endoplasmic reticulum stress ( ERS) model in CASMCs of SD rats.METHODS:CASMCs were cultured by tissue explant method .The morphological characteristics were observed under optical micro-scope.The marker proteins of CASMCs , including α-SMA and SM-MHC, were identified by immunofluorescence tech-nique.The protein expression levels of BiP and CHOP , the marker molecules of ERS, were determined by Western blot . RESULTS:The spindle-shaped CASMCs climbed out from the edge of coronary artery tissues after 6 d, and formed the typical hill and valleygrowth pattern of CASMCs at 9~10 d.The result of immunofluorescence technique showed that α-SMA and SM-MHC were positively expressed .The results of Western blot showed that the protein expression of BiP and CHOP in TG ( 1 and 2 μmol/L ) treatment groups was increased compared with control group .Compared with control group, the protein expression of BiP and CHOP was significantly increased after 1 μmol/L TG treatment for 24 and 48 h. CONCLUSION:CASMCs can be successfully cultured by tissue explant method .ERS model of CASMCs was established by 1 μmol/L TG treatment for 24 h.

2.
The Medical Journal of Malaysia ; : 105-110, 2016.
Article in English | WPRIM | ID: wpr-630745

ABSTRACT

Mesenchymal stem cells (MSCs) derived from human umbilical cord (UC) have been considered as an important tool for treating various malignancies, tissue repair and organ regeneration. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) are better alternative to MSCs that derived from bone marrow (BM-MSCs) as they are regarded as medical waste with little ethical concern for research and easily culture-expanded. In this present study, the foetal distal end of human UC was utilised to generate MSC by explant method. Upon in vitro culture, adherent cells with fibroblastic morphology were generated with rapid growth kinetics. Under the respective inductive conditions, these cells were capable of differentiating into adipocytes and osteocytes; express an array of standard MSC’s surface markers CD29, CD73, CD90, CD106 and MHC-class I. Further assessment of immunosuppression activity revealed that MSCs generated from UC had profoundly inhibited the proliferation of mitogen-activated T lymphocytes in a dosedependent manner. The current laboratory findings have reinforced the application of explant method to generate UCMSCs thus, exploring an ideal platform to fulfil the increasing demand of MSCs for research and potential clinical use.


Subject(s)
Mesenchymal Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL