Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
The Korean Journal of Physiology and Pharmacology ; : 695-702, 2017.
Article in English | WPRIM | ID: wpr-727944

ABSTRACT

The sustained tonic currents (I(tonic)) generated by γ-aminobutyric acid A receptors (GABA(A)Rs) are implicated in diverse age-dependent brain functions. While various mechanisms regulating I(tonic) in the hippocampus are known, their combined role in I(tonic) regulation is not well understood in different age groups. In this study, we demonstrated that a developmental increase in GABA transporter (GAT) expression, combined with gradual decrease in GABA(A)R α₅ subunit, resulted in various I(tonic) in the dentate gyrus granule cells (DGGCs) of preadolescent rats. Both GAT-1 and GAT-3 expression gradually increased at infantile (P₆₋₈ and P₁₃₋₁₅) and juvenile (P₂₀₋₂₂ and P₂₇₋₂₉) stages, with stabilization observed thereafter in adolescents (P₃₄₋₃₆) and young adults (P₄₁₋₄₃). I(tonic) facilitation of a selective GAT-1 blocker (NO-711) was significantly less at P₆₋₈ than after P₁₃₋₁₅. The facilitation of I(tonic) by SNAP-5114, a GAT-3 inhibitor, was negligible in the absence of exogenous GABA at all tested ages. In contrast, I(tonic) in the presence of a nonselective GAT blocker (nipecotic acid, NPA) gradually decreased with age during the preadolescent period, which was mimicked by I(tonic) changes in the presence of exogenous GABA. I(tonic) sensitivity to L-655,708, a GABA(A)R α₅ subunit inverse agonist, gradually decreased during the preadolescent period in the presence of NPA or exogenous GABA. Finally, Western blot analysis showed that the expression of the GABA(A)R α₅ subunit in the dentate gyrus gradually decreased with age. Collectively, our results suggested that the I(tonic) regulation of altered GATs is under the final tune of GABA(A)R α₅ subunit activation in DGGCs at different ages.


Subject(s)
Adolescent , Animals , Humans , Rats , Young Adult , Blotting, Western , Brain , Dentate Gyrus , gamma-Aminobutyric Acid , Hippocampus
2.
The Korean Journal of Physiology and Pharmacology ; : 425-432, 2016.
Article in English | WPRIM | ID: wpr-728689

ABSTRACT

In addition to classical synaptic transmission, information is transmitted between cells via the activation of extrasynaptic receptors that generate persistent tonic current in the brain. While growing evidence supports the presence of tonic NMDA current (INMDA) generated by extrasynaptic NMDA receptors (eNMDARs), the functional significance of tonic I(NMDA) in various brain regions remains poorly understood. Here, we demonstrate that activation of eNMDARs that generate I(NMDA) facilitates the α-amino-3-hydroxy-5-methylisoxazole-4-proprionate receptor (AMPAR)-mediated steady-state current in supraoptic nucleus (SON) magnocellular neurosecretory cells (MNCs). In low-Mg2+ artificial cerebrospinal fluid (aCSF), glutamate induced an inward shift in I(holding) (I(GLU)) at a holding potential (V(holding)) of -70 mV which was partly blocked by an AMPAR antagonist, NBQX. NBQX-sensitive I(GLU) was observed even in normal aCSF at V(holding) of -40 mV or -20 mV. I(GLU) was completely abolished by pretreatment with an NMDAR blocker, AP5, under all tested conditions. AMPA induced a reproducible inward shift in I(holding) (I(AMPA)) in SON MNCs. Pretreatment with AP5 attenuated I(AMPA) amplitudes to ~60% of the control levels in low-Mg2+ aCSF, but not in normal aCSF at V(holding) of -70 mV. I(AMPA) attenuation by AP5 was also prominent in normal aCSF at depolarized holding potentials. Memantine, an eNMDAR blocker, mimicked the AP5-induced I(AMPA) attenuation in SON MNCs. Finally, chronic dehydration did not affect I(AMPA) attenuation by AP5 in the neurons. These results suggest that tonic I(NMDA), mediated by eNMDAR, facilitates AMPAR function, changing the postsynaptic response to its agonists in normal and osmotically challenged SON MNCs.


Subject(s)
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Brain , Cerebrospinal Fluid , Dehydration , Glutamic Acid , Memantine , N-Methylaspartate , Neurons , Receptors, AMPA , Receptors, N-Methyl-D-Aspartate , Supraoptic Nucleus , Synaptic Transmission
3.
Salud ment ; 35(5): 435-443, sep.-oct. 2012. ilus
Article in Spanish | LILACS-Express | LILACS | ID: lil-675542

ABSTRACT

Serotonin is fundamental for the modulation of social behavior, emotions and a wide variety of physiological functions. The functions of serotonergic systems have been highly conserved along the evolutionary scale and in general small numbers of neurons innervate virtually all the nervous system, and exert multiple effects depending on the site of release. Synaptic pools produce fast and local effects, while extrasynaptic pools in the soma, dendrites, axons and the periphery of synapses produce diffuse effects, characteristic of mood modulation. Serotonin release from synaptic terminals is produced by exocytosis of small clear vesicles and is activated by single or low-frequency impulses, while increases in the stimulation frequency produce synaptic facilitation and depression. In contrast, release from the soma is produced by exocytosis of dense-cored vesicles and requires stimulation at high frequencies, the activation of L-type calcium channels and calcium-induced calcium release from intracellular stores. Serotonin released from the presynaptic terminals immediately activates auto-receptors in the same terminals, locally decreasing the subsequent excitability, firing frequency and release. Differential regulation of serotonin release in different cell compartments allows the same neuron to produce different types of effects depending on the firing rate.


La serotonina es fundamental para la modulación de la conducta social, las emociones y una gran cantidad de funciones fisiológicas. La función de los sistemas serotonérgicos se ha conservado a lo largo de la escala evolutiva y, en general, números pequeños de neuronas inervan prácticamente todo el Sistema Nervioso. Estas neuronas son capaces de ejercer múltiples efectos, dependiendo de si liberan serotonina de pozas sinápticas, que ejercen efectos rápidos y locales o de pozas extrasinápticas en la periferia de las sinapsis, el axon, el cuerpo celular o las dendritas, con lo que se producen efectos lentos y difusos, característicos de los estados de ánimo. La liberación de serotonina en las terminales sinápticas es producida por la exocitosis de vesículas claras pequeñas y se activa con impulsos sencillos o a baja frecuencia. La estimulación con trenes de impulsos a frecuencias crecientes produce facilitación y depresión sináptica. En contraste, la liberación a partir del soma es producida por la exocitosis de vesículas de núcleo denso y requiere de la estimulación a frecuencias altas, la activación de canales de calcio tipo L y de la liberación de calcio de los depositos intracelulares. La serotonina liberada por las terminales sinápticas activa de manera inmediata autorreceptores en las propias terminales que la liberaron, disminuyendo la excitabilidad subsiguiente y, por lo tanto, la frecuencia de disparo y la liberación de manera localizada. La regulación diferencial de la liberación en cada compartimiento celular permite que la misma neurona produzca diferentes tipos de efectos dependiendo de la frecuencia de disparo.

4.
Acta Anatomica Sinica ; (6)2002.
Article in Chinese | WPRIM | ID: wpr-577452

ABSTRACT

Objective To investigate the mechanism of the soluble A? oligomers-induced alteration of synaptic proteins. Methods This study applied immunocytochemistry technique to investigate the changes of the expression of postsynaptic density-95(PSD-95) in primary hippocampal neurons, which was exposed to A?_ 25-35 after NMDAR antagonist or agonist treatment. Results The results showed that A?_ 25-35 downregulated PSD-95 protein in a dose- and time-dependent manner. Treatment of cells with MK801 (a general NMDA receptor antagonist) prevented A?-induced PSD-95 degradation. Moreover, when extrasynaptic NMDA receptors were blocked by ifenprodil (a NR2B subunit specific antagonist), the A?-induced downregulation of PSD-95 was significantly attenuated. Whereas, when synaptic NMDA receptors were blocked by bicuculline (a GABA receptor antagonist) in combination with MK801, the PSD-95 degradation did not change significantly.Conclusion The results suggest that A?-induced downregulation of PSD-95 depends on NMDAR activity, and extrasynaptic NMDA receptors may be involved in A?-induced synaptic protein degradation.

SELECTION OF CITATIONS
SEARCH DETAIL