Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
J Biosci ; 2015 June; 40(2): 339-354
Article in English | IMSEAR | ID: sea-181392

ABSTRACT

Lithium is an effective mood stabilizer but its use is associated with many side effects. Electrophysiological recordings of miniature excitatory postsynaptic currents (mEPSCs) mediated by glutamate receptor AMPA-subtype (AMPARs) in hippocampal pyramidal neurons revealed that CLi (therapeutic concentration of 1 mM lithium, from days in vitro 4–10) decreased the mean amplitude and mean rectification index (RI) of AMPAR mEPSCs. Lowered mean RI indicate that contribution of Ca2+-permeable AMPARs in synaptic events is higher in CLi neurons (supported by experiments sensitive to Ca2+-permeable AMPAR modulation). Co-inhibiting PKA, GSK-3β and glutamate reuptake was necessary to bring about changes in AMPAR mEPSCs similar to that seen in CLi neurons. FM1-43 experiments revealed that recycling pool size was affected in CLi cultures. Results from minimum loading, chlorpromazine treatment and hyperosmotic treatment experiments indicate that endocytosis in CLi is affected while not much difference is seen in modes of exocytosis. CLi cultures did not show the high KCl associated presynaptic potentiation observed in control cultures. This study, by calling attention to long-term lithium-exposure-induced synaptic changes, might have implications in understanding the side effects such as CNS complications occurring in perinatally exposed babies and cognitive dulling seen in patients on lithium treatment.

2.
Korean Journal of Otolaryngology - Head and Neck Surgery ; : 25-30, 2007.
Article in Korean | WPRIM | ID: wpr-656177

ABSTRACT

BACKGROUND AND OBJECTIVES: In normal postnatal mammalian inner ear sensory epithelium, regeneration of hair cells is a very rare event, but there is hair cell regeneration with partial restoration of the vestibular sensory epithelium following ototoxic damage. In this study, the effects of low-level laser on hair cell regeneration following gentamicin exposure in postnatal organotypic culture of rat utricles were investigated. MATERIALS AND METHOD: A long term organotypic culture of 2 to 7 day old rat utricular maculae was established to study aminoglycoside-induced vestibular hair cell renewal. The utricles were exposed to 1 mM of gentamicin for 48 hr and allowed to recover in a culture medium only or in a medium with daily irradiation of low-level laser, whereas the control group was not exposed to gentamicin. Whole-mount utricles were stained with FM1-43, which are known to be an efficient marker, to identify live hair cells in cultured tissues. RESULTS: Loss of hair cells was nearly stopped from 2 days after exposure to gentamicin ; a peak of regeneration was reached after 18 days and sustained for two weeks in the medium with the irradiation of low-level laser. CONCLUSION: These results suggest that low-level laser promotes spontaneous hair cell regeneration following gentamicin damage in utricular explants.


Subject(s)
Animals , Rats , Ear, Inner , Epithelium , Gentamicins , Hair Cells, Vestibular , Hair , Regeneration , Saccule and Utricle
3.
Journal of the Korean Balance Society ; : 29-34, 2006.
Article in Korean | WPRIM | ID: wpr-131278

ABSTRACT

BACKGROUND AND OBJECTIVES: To culture and maintain mammalian hair cells is still a big challenge. In this study, long-term organotypic culture of rat utricular maculae was established to study vestibular hair cell. The effects of low level laser on hair cell viability in postnatal organotypic culture of rat utricles were investigated. MATERIALS AND METHOD: Uticular explants were prepared from postnatal 2 to 7 rats and cultured. To improve hair cell survival, the utricles were irradiated daily with low level laser. Whole-mount utricles were stained with FM1-43 which is known to be an efficient marker to identify live hair cells in cultured tissues. Such cells visualized directly through tissue culture dish with cover glass bottom by Confocal laser scanning microscope at specific time points. RESULTS: The explanted utricular hair cells were cultured for up to 31 days in in vitro culture system. In low level laser irradiation group, utricular hair cells were more survived at 24 DIV and 31 DIV. CONCLUSION: These results suggest that low level laser promotes hair cell viability in utricular explants.


Subject(s)
Animals , Rats , Cell Survival , Glass , Hair Cells, Vestibular , Hair , Saccule and Utricle
4.
Journal of the Korean Balance Society ; : 29-34, 2006.
Article in Korean | WPRIM | ID: wpr-131275

ABSTRACT

BACKGROUND AND OBJECTIVES: To culture and maintain mammalian hair cells is still a big challenge. In this study, long-term organotypic culture of rat utricular maculae was established to study vestibular hair cell. The effects of low level laser on hair cell viability in postnatal organotypic culture of rat utricles were investigated. MATERIALS AND METHOD: Uticular explants were prepared from postnatal 2 to 7 rats and cultured. To improve hair cell survival, the utricles were irradiated daily with low level laser. Whole-mount utricles were stained with FM1-43 which is known to be an efficient marker to identify live hair cells in cultured tissues. Such cells visualized directly through tissue culture dish with cover glass bottom by Confocal laser scanning microscope at specific time points. RESULTS: The explanted utricular hair cells were cultured for up to 31 days in in vitro culture system. In low level laser irradiation group, utricular hair cells were more survived at 24 DIV and 31 DIV. CONCLUSION: These results suggest that low level laser promotes hair cell viability in utricular explants.


Subject(s)
Animals , Rats , Cell Survival , Glass , Hair Cells, Vestibular , Hair , Saccule and Utricle
SELECTION OF CITATIONS
SEARCH DETAIL