Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Korean Journal of Radiology ; : 226-235, 2008.
Article in English | WPRIM | ID: wpr-46423

ABSTRACT

OBJECTIVE: To assess the influence of variable factors such as the size of the airway and the CT imaging parameters such as the reconstruction kernel, field-of-view (FOV), and slice thickness on the automatic measurement of airway dimension. MATERIALS AND METHODS: An airway phantom was fabricated that contained eleven poly-acryl tubes of various lumen diameters and wall thicknesses. The measured density of the poly-acryl wall was 150 HU, and the measured density of the airspace filled with polyurethane foam was -900 HU. CT images were obtained using a 16-MDCT (multidetector CT) scanner and were reconstructed with various reconstruction kernels, thicknesses and FOV. The luminal radius and wall thickness were measured using in-house software based on the full-width-half-maximum method. The measured values as determined by CT and the actual dimensions of the tubes were compared. RESULTS: Measurements were most accurate on images reconstructed with use of a standard kernel (mean error: -0.03 +/- 0.21 mm for wall thickness and -0.12 +/- 0.11 mm for the luminal radius). There was no significant difference in accuracy among images with the use of variable slice thicknesses or a variable FOV. Below a 1-mm threshold, the measurement failed to represent the change of the real dimensions. CONCLUSION: Measurement accuracy was strongly influenced by the specific reconstruction kernel utilized. For accurate measurement, standardization of the imaging protocol and selection of the appropriate anatomic level are essential.


Subject(s)
Cone-Beam Computed Tomography/methods , Feasibility Studies , Phantoms, Imaging , Respiratory System/anatomy & histology
2.
Korean Journal of Radiology ; : 236-242, 2008.
Article in English | WPRIM | ID: wpr-46422

ABSTRACT

OBJECTIVE: To develop an algorithm to measure the dimensions of an airway oriented obliquely on a volumetric CT, as well as assess the effect of the imaging parameters on the correct measurement of the airway dimension. MATERIALS AND METHODS: An airway phantom with 11 poly-acryl tubes of various lumen diameters and wall thicknesses was scanned using a 16-MDCT (multidetector CT) at various tilt angles (0, 30, 45, and 60degree). The CT images were reconstructed at various reconstruction kernels and thicknesses. The axis of each airway was determined using the 3D thinning algorithm, with images perpendicular to the axis being reconstructed. The luminal radius and wall thickness was measured by the full-width-half-maximum method. The influence of the CT parameters (the size of the airways, obliquity on the radius and wall thickness) was assessed by comparing the actual dimension of each tube with the estimated values. RESULTS: The 3D thinning algorithm correctly determined the axis of the oblique airway in all tubes (mean error: 0.91 +/- 0.82degree). A sharper reconstruction kernel, thicker image thickness and larger tilt angle of the airway axis resulted in a significant decrease of the measured wall thickness and an increase of the measured luminal radius. Use of a standard kernel and a 0.75-mm slice thickness resulted in the most accurate measurement of airway dimension, which was independent of obliquity. CONCLUSION: The airway obliquity and imaging parameters have a strong influence on the accuracy of the airway wall measurement. For the accurate measurement of airway thickness, the CT images should be reconstructed with a standard kernel and a 0.75 mm slice thickness.


Subject(s)
Algorithms , Cone-Beam Computed Tomography/methods , Imaging, Three-Dimensional , Phantoms, Imaging , Respiratory System/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL