Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Main subject
Year range
1.
Chinese Journal of Radiological Medicine and Protection ; (12): 923-927, 2018.
Article in Chinese | WPRIM | ID: wpr-734299

ABSTRACT

Objective To investigate the optimal distance between upper and lower target volumes and their correlated planning parameters by analyzing the dose distribution in the abutment regions during total body irradiation ( TBI) using helical tomotherapy. Methods A total of 10 patients with acute leukemia and with a height around 120 cm were enrolled. All patients were scanned by a Siemens simulation computerized tomography (CT) at a slice thickness of 5 mm. A lead wire was placed 10. 0 cm above the patella as a marker of the separation boundary for the upper and lower target volumes. The delineations of target volumes and organs at risk ( OARs ) were performed in the Varian Eclipse 13. 5 workstation with targets shrunk beyond the separation boundary at different distances. After contours and CT images were transferred to HT workstation, treatment plans were designed with different field width (FW, 5. 0 cm/2. 5 cm/1. 0 cm) and pitch values (0. 430/0. 287) at a modulation factor of 1. 8. All the plans were optimized with a dose calculation grid of 0. 195 cm × 0. 195 cm and identical planning parameters. The correlation between treatment planning parameters and targets shrunk distances were investigated by analyzing the dose distributions in the abutment area. Results The study demonstrated that the dose distributions in the abutment area were influenced only by the field width parameters: when the gap distance between the upper and lower targets was 5. 0 cm, the optimal FW is 5. 0 cm;Similarly when the gap distances were 2. 0 cm and 1. 0 cm, and the optimal FW 2. 5 cm and 1. 0 cm, respectively. In another words, the dose distribution of the abutment region was optimal when the target gap distance was equal to FW. Pitch values did not affect the quality of dose distribution in the abutment region and the overall treatment time ratio. Overall treatment time was inversely related to the FW. Conclusions Consistent target distance and FW is helpful to improve the dose homogeneity in the abutment area during TBI with HT. Appropriate planning parameters is critical to balance the treatment efficacy and efficiency.

2.
Korean Journal of Medical Physics ; : 323-331, 2010.
Article in Korean | WPRIM | ID: wpr-8224

ABSTRACT

The Hi-Art system for TomoTherapy allows only three (1.0 cm, 2.5 cm, 5.0 cm) field widths and this can produce different dose distribution around the end of PTV (Planning target volume) in the direction of jaw movement. In this study, we investigated the effect of field width on the dose difference around the PTV using DQA (Delivery quality assurance) phantom and real clinical patient cases. In the analysis with DQA phantom, the calculated dose and irradiated films showed that the more dose was widely spreaded out in the end region of PTV as increase of field width. The 2.5 cm field width showed a 1.6 cm wider dose profile and the 5.0 cm field width showed a 4.2 cm wider dose profile compared with the 1.0 cm field width in the region of 50% of maximum dose. The analysis with four patient cases also showed the similar results with the DQA phantom which means that more dose was irradiated around the superior and inferior end of PTV as an increase of field width. The 5.0 cm field width produced the remarkable high dose distribution around the end region of PTV and we could evaluate the effect quantitatively with the calculation of DVH (Dose volume histogram) of the virtual PTVs which were delineated around the end of PTV in the direction of jaw variation. From these results, we could verify that the margin for PTV in the direction of table movement should be reduced compared with the conventional margin for PTV when the large field such as 5.0 cm was used in TomoTherapy.


Subject(s)
Humans , Jaw
SELECTION OF CITATIONS
SEARCH DETAIL