Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Radiation Oncology ; (6): 387-390, 2013.
Article in Chinese | WPRIM | ID: wpr-442014

ABSTRACT

Objective To compare the errors of final isocenter marking method and reference point marking method for CT simulation positioning in intensity-modulated radiotherapy (IMRT).Methods From 2009 to 2012,327 patients with head and neck cancer for IMRT underwent CT simulation positioning using the Philips Brilliance CT Big Bore scanner and Philips Tumor LOC workstation and were divided into final isocenter marking group (n =208) and reference point marking group (n =119) according to positioning methods.Target volume delineation and treatment plan design were performed on the Varian Eclipse treatment planning system (TPS).Before treatment,kilovoltage cone-beam CT scans and registration were performed with the Varian EX on-board imager system to obtain beam position errors in the right-left (RL),superior-inferior (SI),and anterior-posterior (AP) directions,and then comparisons of errors between the two groups were made by independent-samples t test.Finally,the TPS was used to measure the changes in the doses to the organs at risk after moving isocenters in the RL,SI,and AP directions among 5 patients with nasopharyngeal carcinoma.Results The mean beam position errors in the three directions were less in the final isocenter marking group than in the reference point marking group (P =0.02,0.01,0.03).After moving isocenters in the three directions,the target dose was reduced and the dose to the normal tissue around the target tumor was increased significantly.The error in the AP direction had the maximum influence on the spinal cord and brainstem.Conclusions Final isocenter marking method leads to less beam position error than reference point marking method in CT simulation positioning.Small isocenter motion can cause large changes in the doses to the organs at risk.

2.
Chinese Journal of Radiological Medicine and Protection ; (12): 301-303, 2012.
Article in Chinese | WPRIM | ID: wpr-427089

ABSTRACT

Objective To evaluate the setup errors of image guided radiation therapy (IGRT) for head-and-neck cancer using kilovoltage cone beam CT( kV CBCT).Methods 256 patients with head-and-neck cancer were treated with intensity modulated radiation therapy (IMRT) from March 2009 to October 2011.All patients were immobilized with head-and-neck mask and localized with final isocenter marking method using the Philips PQS CT or Philips Brilliance CT Big Bore scanners,which were equipped with LAP movable laser systems.The CT images were transferred to a Varian Eclipse V8.6 workstation for contouring and planning.A kV cone-beam CT scans was acquired,and registered before the treatment for every patient on a Varian iX linear accelerator via OBI system.The setup errors in the right-left ( RL),superior-inferior (SI),and anterior-posterior (AP) directions were recorded.Results The setup errors for the 473 datasets followed a Gaussian distribution.The systematic errors ± random errors in the RL,SI and AP were(-0.6 ± 1.3 ),(0.5 ± 1.6) and (0.9 ± 1.7 ) mm,respectively.The planning target volume (PTV) margins were calculated respectively as 2.4,2.4 and 3.4 mm according to the formula of M =2.5∑ +0.7δ The margins of 288 sets of data using the Big Bore CT scanner were calculated as 2.0,2.1 and 1.7 mm,respectively.Conclusions The setup errors using final isocenter marking method are smaller than those using reference point marking method.The result derived from this retrospective study could be used to set the margin between CTV and PTV.

SELECTION OF CITATIONS
SEARCH DETAIL