Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Annals of Dentistry ; : 52-60, 2021.
Article in English | WPRIM | ID: wpr-906583

ABSTRACT

@#This study aims to compare flexural strength and flexural modulus of different resin-based composites (RBCs) and to determine the impact of dietary solvents on flexural properties. Forty specimens (12x2x2mm) for each of two conventional (Aura Easy [AE]; Harmonize [HN]) and one bulk fill (Sonic Fill 2 [SF2]) were fabricated using customised plastic moulds. Specimens were light-cured, measured and randomly divided into four groups. The groups (n=10) were conditioned for 7 days at 37°C: in one of media: air (control), artificial saliva (SAGF), 0.02N citric acid and 50% ethanol–water solution. After conditioning, the specimens subjected to flexural testing. Two-way ANOVA and one-way ANOVA (post hoc: Tukey’s or Dunnett T3 tests) were used at =0.05. Significant differences in flexural properties were observed between materials and conditioning media. Flexural strength and modulus values ranged from 124.85MPa to 51.25MPa; and 6.76GPa to 4.03GPa, respectively. The highest flexural properties were obtained with conditioning in air. Exposure to aqueous solutions generally reduced flexural properties. In conclusion, the effect of dietary solvents on flexural properties were material and medium dependent. For functional longevity of restorations, patients’ alcohol intake should be considered during material selection. Dietary advice (reduce alcohol consumption) should be given to patients post operatively.

2.
Braz. dent. sci ; 22(2): 234-242, 2019. tab, ilus
Article in English | LILACS, BBO | ID: biblio-996919

ABSTRACT

Objective: The objective of this study was to evaluate the compressive strength, flexural strength and flexural modulus of high-viscosity, low-viscosity bulk-fill, and conventional nanohybrid resin composite materials alone and when covered with nano-hybrid resin composite at different incremental thicknesses on the bulk-fill composites. Material and Methods: Specimens (N=60) were fabricated from the following materials or their combinations (n=10 per group): a) conventional nano-hybrid composite Z550 (FK), b) high-viscosity bulk-fill composite (Tetric N Ceram-TBF), c) low-viscosity bulk-fill composite SDR (SDR), d) Sonicfill (SF), e) SDR (2 mm)+FK (2 mm), f) SDR (4 mm)+FK (4 mm). After 24 h water storage, compressive strength was measured in a universal testing machine (1 mm/min). Additional specimens (N=40) (25x2x2 mm3) were made from FK, TBF, SDR and SF in order to determine the flexural strength and the flexural modulus, (n=10) and subjected to three-point bending test (0.5 mm/min). Data were analyzed using one-way ANOVA and Tamhane's T2 post-hoc tests (p p<0.05). Results: The mean compressive strength (MPa) of the nano-hybrid composite (FK) was significantly higher (223.8±41.3) than those of the other groups (123±27 - 170±24) (p <0.001). SDR (4 mm)+FK (2 mm) showed significantly higher compressive strength than when covered with 4 mm (143±30) or when used alone (146±11) (p <0.05). The mean flexural strength (159±31) and the flexural modulus of FK (34±7) was significantly higher than that of the high- or low-viscosity bulk-fill composites (p<0.001). The mean flexural strength of SF (132±20) was significantly higher compared to TBF (95±25) (p <0.05). Conclusion: Bulk-fill resin composites demonstrated poorer mechanical properties compared to nano-hybrid composite but similar to that of SF. Increasing the thickness of low-viscosity bulk-fill composite (SDR) from 2 to 4 mm underneath the nano-hybrid composite (FK) can improve the mechanical properties of the bulk-fill composites.(AU)


Objetivo: O objetivo deste estudo foi avaliar a resistência à compressão, resistência à flexão e módulo de flexão de materiais compósitos de alta viscosidade, baixa viscosidade e compósitos nanohíbridos convencionais e quando cobertos com resina composta nano-híbrida em diferentes espessuras incrementais sobre os compósitos de resina tipo bulkfilll. Material e Métodos: Os espécimes (N = 60) foram fabricados a partir dos seguintes materiais ou suas combinações (n = 10 por grupo): a) compósito nano-híbrido convencional Z550 (FK), b) compósito de bulk-fill de alta viscosidade (Tetric N CeramTBF), c) compósito SDR (SDR) de bulk-fill de baixa viscosidade, d) Sonicfill (SF), e) SDR (2 mm) + FK (2 mm), f) SDR (4 mm) + FK (4 mm). Após 24 h de armazenamento em água, a resistência à compressão foi medida em uma máquina universal de ensaios (1 mm / min). Espécimes adicionais (N = 40) (25x2x2 mm3) foram confeccionados com FK, TBF, SDR e SF para determinação da resistência à flexão e do módulo de flexão, (n = 10) e submetidos ao teste de flexão de três pontos (0,5 mm / min). Os dados foram analisados utilizando one-way ANOVA e testes post-hoc T2 de Tamhane (p <0,05). Resultados: A resistência média à compressão (MPa) do compósito nano-híbrido (FK) foi significativamente maior (223,8 ± 41,3) que os demais grupos (123 ± 27 - 170 ± 24) (p <0,001). SDR (4 mm) + FK (2 mm) apresentou resistência à compressão significativamente maior do que quando coberta com 4 mm (143 ± 30) ou quando usada sozinha (146 ± 11) (p <0,05). A resistência à flexão média (159 ± 31) e o módulo de flexão de FK (34 ± 7) foram significativamente maiores do que os compósitos do tipo bulk-fill de alta ou baixa viscosidade (p <0,001). A resistência à flexão média do FS (132 ± 20) foi significativamente maior em comparação ao TBF (95 ± 25) (p <0,05). Conclusão: Os compósitos de resina do tipo bulk-fill demonstraram propriedades mecânicas mais insatisfatórias em comparação com o compósito nano-híbrido, mas semelhantes aos do SF. O aumento da espessura do composto de bulkfilll de baixa viscosidade (SDR) de 2 a 4 mm sob o compósito nano-híbrido (FK) pode melhorar as propriedades mecânicas dos compósitos de bulk-fill.(AU)


Subject(s)
Tensile Strength , Bite Force , Composite Resins
3.
J. appl. oral sci ; 25(2): 203-210, Mar.-Apr. 2017. tab, graf
Article in English | LILACS, BBO | ID: biblio-841180

ABSTRACT

Abstract Objective This study evaluated the fracture resistance of endodontically treated teeth restored with fiber reinforced composite posts, using three resin composite core build-up materials, (Clearfil Photo Core (CPC), MultiCore Flow (MCF), and LuxaCore Z-Dual (LCZ)), and a nanohybrid composite, (Tetric N-Ceram (TNC)). Material and Methods Forty endodontically treated lower first premolars were restored with quartz fiber posts (D.T. Light-Post) cemented with resin cement (Panavia F2.0). Samples were randomly divided into four groups (n=10). Each group was built-up with one of the four core materials following its manufacturers’ instructions. The teeth were embedded in acrylic resin blocks. Nickel-Chromium crowns were fixed on the specimens with resin cement. The fracture resistance was determined using a universal testing machine with a crosshead speed of 1 mm/min at 1350 to the tooth axis until failure occurred. All core materials used in the study were subjected to test for the flexural modulus according to ISO 4049:2009. Results One-way ANOVA and Bonferroni multiple comparisons test indicated that the fracture resistance was higher in the groups with CPC and MCF, which presented no statistically significant difference (p>0.05), but was significantly higher than in those with LCZ and TNC (p<0.05). In terms of the flexural modulus, the ranking from the highest values of the materials was aligned with the same tendency of fracture loads. Conclusion Among the cores used in this study, the composite core with high filler content tended to enhance fracture thresholds of teeth restored with fiber posts more than others.


Subject(s)
Humans , Tooth Fractures , Post and Core Technique , Composite Resins/chemistry , Tooth, Nonvital/therapy , Surface Properties , Viscosity , Materials Testing , Random Allocation , Reproducibility of Results , Analysis of Variance , Statistics, Nonparametric , Pliability , Resin Cements/chemistry , Dental Restoration Failure , Methacrylates/chemistry
4.
Article in English | IMSEAR | ID: sea-148679

ABSTRACT

Background: Flexural strength (FS) is one of the most important properties of restorative dental materials which could be improved in fiber-reinforced composites (FRCs) by several methods including the incorporation of stronger reinforcing fibers. Aim: This study evaluates the influence of the glass fiber diameter on the FS and elastic modulus of FRCs at the same weight percentage. Materials and Methods: A mixture of 2,2-bis-[4-(methacryloxypropoxy)-phenyl]-propaneand triethyleneglycol dimethacrylate (60/40 by weight) was prepared as the matrix phase in which 0.5 wt. % camphorquinone and 0.5 wt. % N-N'-dimethylaminoethyl methacrylate were dissolved as photoinitiator system. Glass fibers with three different diameters (14, 19, and 26 μm) were impregnated with the matrix resin using a soft brush. The FRCs were inserted into a 2 × 2 × 25 mm 3 mold and cured using a light curing unit with an intensity of ca. 600 mW/cm 2 . The FS of the FRCs was measured in a three-point bending method. The elastic modulus was determined from the slope of the initial linear part of stress-strain curve. The fracture surface of the composites was observed using scanning electron microscopy to study the fiber-matrix interface. Statistical Analysis: The results were analyzed and compared using one-way ANOVA and Tukey's post-hoc test. Results: Although the FS increased as the diameter of fibers increased up to 19 μm (P < 0.05), no significant difference was observed between the composites containing fibers with diameters of 19 and 26 μm. Conclusion: The diameter of the fibers influences the mechanical properties of the FRCs.

5.
The Journal of Advanced Prosthodontics ; : 396-401, 2013.
Article in English | WPRIM | ID: wpr-227908

ABSTRACT

PURPOSE: The purpose of this in vitro study was to investigate the flexural properties of a recently introduced urethane dimethacrylate denture base material (Eclipse) after being repaired with two different materials. MATERIALS AND METHODS: Two repair groups and a control group consisting of 10 specimens each were generated. The ES group was repaired with auto-polymerizing polymer. The EE group was repaired with the Eclipse. The E group was left intact as a control group. A 3-point bending test device which was set to travel at a crosshead speed of 5 mm/min was used. Specimens were loaded until fracture occurred and the mean displacement, maximum load, flexural modulus and flexural strength values and standard deviations were calculated for each group and the data were statistically analyzed. The results were assessed at a significance level of P.05) was found between the mean values of Group ES and EE. There was a statistically significant positive relation (P<.01) between the displacement and maximum load of Group ES (99.5%), Group EE (94.3%) and Group E (84.4%). CONCLUSION: The more economic and commonly used self-curing acrylic resin can be recommended as an alternative repair material for Eclipse denture bases.


Subject(s)
Acrylic Resins , Denture Bases , Dentures , Methacrylates , Polymers , Polyurethanes , Urethane
6.
The Journal of Advanced Prosthodontics ; : 136-139, 2011.
Article in English | WPRIM | ID: wpr-172524

ABSTRACT

PURPOSE: A new light curing urethane dimethacrylate and a cold curing resin with simpler and faster laboratory procedures may have even improved flexural properties. This study investigated the 3-point flexural strengths and flexural moduli of two alternate base materials. MATERIALS AND METHODS: A cold curing resin (Weropress) and a light curing urethane dimethacrylate base material (Eclipse). Along with Eclipse and Weropress, a high impact resin (Lucitone199) and three conventional base materials (QC 20, Meliodent and Paladent 20) were tested. A 3-point bending test was used to determine the flexural strengths and flexural moduli. The mean displacement, maximum load, flexural modulus and flexural strength values and standard deviations for each group were analyzed by means of one-way analysis of variance (ANOVA) (with mean difference significant at the 0.05 level). Post hoc analyses (Scheffe test) were carried out to determine the differences between the groups at a confidence level of 95%. RESULTS: Flexural strength, displacement and force maximum load values of Eclipse were significantly different from other base materials. Displacement values of QC 20 were significantly different from Lucitone 199 and Weropress. CONCLUSION: The flexural properties and simpler processing technique of Eclipse system presents an advantageous alternative to conventional base resins and Weropress offers another simple laboratory technique.


Subject(s)
Acrylic Resins , Cold Temperature , Denture Bases , Dentures , Displacement, Psychological , Light , Methacrylates , Methylmethacrylates , Polyurethanes , Urethane
7.
Article in English | IMSEAR | ID: sea-139733

ABSTRACT

Background: The radiopacity degree of posts is not enough for adequate visualization during radiographic analyses. Glass fiber post with stainless steel reinforcement has been fabricated in an attempt to overcome this limitation. Aim: This study was designed to determine the influence of this metal reinforcement on the post mechanical properties. Materials and Methods: This study evaluated flexural modulus (E), flexural strength (σ), and stiffness (S) of five different fiber post systems (n = 5): RfX (Reforpost Glass Fiber RX; Ângelus, Londrina, PR, Brazil); RG (Reforpost Glass Fiber, Ângelus); RC (Reforpost Carbon Fiber, Ângelus); FP (Fibrekor Post; Jeneric Pentron Inc., Wallingford, CT, USA); and CP (C-Post; Bisco Dental Products, Schaumburg, IL, USA), testing the hypothesis that the insertion of a metal reinforcement (RfX) jeopardizes the mechanical properties of a glass fiber post. Posts were loaded in three-point bending using a testing machine with a crosshead speed of 0.5 mm/min. Results : The results were statistically analyzed using one-way ANOVA and Tukey's multiple range tests (a = 0.05). Mean and standard deviation values of E (GPa), s (MPa), and S (N/mm) were as follows: RfX: 10.8 ± 1.6, 598.0 ± 52.0, 132.0 ± 21.9; RG: 10.6 ± 1.0, 562.0 ± 24.9, 137.8 ± 5.5; RC: 15.9 ± 2.4, 680.5 ± 34.8, 190.9 ± 12.9; FP: 10.9 ± 1.4, 586.8 ± 21.9, 122.4 ± 17.3; CP: 6.3 ± 1.7, 678.1 ± 54.2, 246.0 ± 41.7. Carbon fiber posts showed the highest mean s values (P < 0.05). In addition, RC showed the highest mean E value and CP showed the highest mean S value (P < 0.05). Conclusion : The hypothesis was rejected since the metal reinforcement in the glass fiber post (RfX) does not decrease the mechanical property values. Posts reinforced with carbon fibers have a higher flexural strength than glass fiber posts, although all posts showed similar mechanical property values with dentin.


Subject(s)
Analysis of Variance , Carbon , Dental Alloys , Dental Materials , Dental Stress Analysis , Elastic Modulus , Elasticity , Glass , Materials Testing , Pliability , Post and Core Technique/instrumentation , Root Canal Therapy/instrumentation , Stainless Steel , Statistics, Nonparametric , Stress, Mechanical
8.
Rev. odonto ciênc ; 24(1): 15-18, jan.-mar. 2009. tab
Article in English | LILACS, BBO | ID: lil-506369

ABSTRACT

Purpose: The purpose of this study was to evaluate the flexural strength and modulus of two adhesive systems using biaxial flexural strength test. Methods: The bonding agents (Pentron Clinical Technologies) tested were: Bond 1 (B1) and NanoBond (NB). Thirteen disks (6.1 mm diameter and 0.6 mm thick) were prepared with adhesive solutions of each bonding agents using Teflon molds. The adhesive solutions within the molds were light-activated with XL 3000 curing unit (3M ESPE) for 10 s on both sides. The disks were stored for 10 days and were tested in a universal testing machine (1.27 mm/min - Instron 5844). Data were statistically analyzed by one-way ANOVA (á=0.05). Results: The mean values of fracture strength (±SD) for adhesive systems were (in MPa):B1- 89.7±7.6 e NB- 131.1±9.5. Modulus means (±SD) were (in MPa): B1- 1999.9±258.4 e NB- 2314.5±271.0. Conclusion: The filled adhesive system (NB) exhibited higher strength and flexural modulus means than the unfilled adhesive B1.


Objetivo: O objetivo deste estudo foi avaliar a resistência flexural e o módulo de flexão de dois sistemas adesivos, através de ensaio de resistência flexural biaxial. Metodologia: Os adesivos (Pentron Clinical Technologies) estudados foram: Bond 1 (B1) e NanoBond (NB). Treze discos de cada adesivo foram preparados com dimensões aproximadas de 6,1 mm de diâmetro e 0,6 mm de espessura. Os discos de adesivos foram confeccionados utilizando-se moldes de teflon e fotopolimerizados com aparelho XL 3000 (3M ESPE). Após armazenamento por 10 dias, os discos foram testados em máquina universal de ensaio (Instron 5844), com velocidade de 1,27 mm/min. Os dados foram submetidos à análise de variância (1 fator) ao nível de significância de 0,05. Resultados: Os valores médios (±DP) de resistência flexural para os adesivos foram (em MPa): B1- 89,7±7,6 e NB- 131,1±9,5. Os valores médios de módulo flexural (±DP) foram (em MPa): B1- 1999,9±258,4 e NB- 2314,5±271,0.Conclusão: O adesivo contendo partículas de carga (NB) mostrou maiores valores de resistência flexural e módulo de flexão que o adesivo B1.


Subject(s)
Dentin-Bonding Agents , Materials Testing , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL