Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Nucleus (La Habana) ; (65): 36-41, ene.-jun. 2019. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1091387

ABSTRACT

Abstract The service provided by Gamma Cameras (GC) in Nuclear Medicine departments fails because of their breakdown, generally due to the associated electronics and not to the physical detection components. Therefore, it was decided to develop an electronic system that allows the recovery and optimization of disused GC, starting with the design of the preamplifier for each photomultiplier tube (PMT). The circuit was designed and simulated and the list of components necessary for the construction of the preamplifier was generated, as well as the printed circuit board was designed for its assembly. By simulating the preamplifier, this worked in linear mode. This determines that the amplitude of the output signal is proportional to the amount of charge delivered by the detector. This card allows an automatic adjustment of the signals of the PMTs as modern GC do. Besides, the circuit was designed and simulated for 37 and 75 PMTs, and the printed circuit board was designed for both cases.


Resumen El servicio que prestan las Cámaras Gamma (CG) en los departamentos de Medicina Nuclear falla por roturas de las mismas, generalmente debido a la electrónica asociada y no a los componentes físicos de detección. Por tal razón, se decidió desarrollar un sistema electrónico que permita la recuperación y optimización de las CG en desuso, comenzando con el diseño del preamplificador para cada tubo fotomultiplicador (TFM). Se diseñó y simuló el circuito y se generó la lista de componentes necesarios para la construcción del preamplificador, así como se diseñó la placa de circuitos impresos para su montaje. Al simular el preamplificador este trabajó en modo lineal. Esto determina que la amplitud de la señal de salida sea proporcional a la cantidad de carga entregada por el detector. Esta tarjeta permite un ajuste automático de las señales de los TFMs como lo hacen las CG modernas. Además, se diseñó y simuló el circuito para 37 y 75 TFMs, así como se diseñó la placa de circuitos impreso para ambos casos.

2.
Nucleus (La Habana) ; (65): 42-46, ene.-jun. 2019. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1091388

ABSTRACT

Abstract Positron emission tomography (PET) is one of the most important diagnostic tools in medicine, allowing three-dimensional imaging of functional processes in the body. It is based on a detection of two gamma rays with an energy of 511 keV originating from the point of annihilation of the positron emitted by a radio-labeled agent. By measuring the difference of the arrival times of both annihilation photons it is possible to localize the tracer inside the body. Gamma rays are normally detected by a scintillation detector, whose timing accuracy is limited by a photomultiplier and a scintillator. By replacing a photo sensor with a microchannel plate PMT (MCP-PMT) and a scintillator with Cherenkov radiator, it is possible to localize the interaction position to the cm level. In a pioneering experimental study with Cherenkov detectors using PbF 2 crystals and microchannel plate photomultiplier tubes MCP-PMT a time resolution better than 100 ps was achieved. In this work a DRS4 digital ring sampler chip was used to read out single photon output signals from two different MCP-PMTs (Hamamatsu R3809 and Burle 85001) with a sampling rate of 5×109 samples/s. The digitized waveforms were analyzed and a comparison between the two detectors timing response was made. The time resolutions achieved were (161 ± 2.21) ps and (220 ± 2.63) ps FWHM for the Hamamatsu and Burle MCP-PMT respectively. No significant variances were observed in the study of the behavior of the FWHM when both MCP-PMT were scanned.


Resumen La tomografía por emisión de positrones (PET) es una importante herramienta en el diagnóstico médico ya que permite la obtención de imágenes tridimensionales de los procesos funcionales en el cuerpo. La técnica está basada en la detección de los dos cuantos gamma de 511 keV originados en la aniquilación del positrón emitido por el radiofármaco administrado al paciente. Midiendo la diferencia en la llegada de los dos cuantos gamma es posible determinar la posición en la que ocurrió la aniquilación. En los equipos convencionales son utilizados detectores centellantes cuya respuesta temporal está limitada por el fotomultiplicador y el cristal centellante. Remplazando el fotomultiplicador por un PMT (MCP-PMT) y el cristal centellante por un detector Cherenkov, es posible localizar la posición en la que ocurrió la aniquilación con una exactitud a nivel de pocos centímetros. En previos resultados experimentales utilizando detectores Cherenkov con cristales de PbF 2 y MCP-PMT se alcanzó una respuesta temporal de menos de 100 ps. En este trabajo fue utilizado un chip DRS4 con una velocidad de procesamiento de las señales de 5×109 samples/s para la lectura de la salida de fotones únicos de los dos MCP-PMT estudiados (Hamamatsu R3809 y Burle 85001). Las señales digitalizadas fueron analizadas y se realizó una comparación entre la respuesta temporal obtenida para ambos MCP-PMT. El tiempo de respuesta obtenido en términos de FWHM fue de (161 ± 2.21) ps y (220 ± 2.63) ps para los MCP-PMT Hamamatsu y Burle respectivamente. No se detectaron variaciones significativas en el FWHM al escanearse la superficie activa de ambos MCP-PMT .

3.
Nucleus (La Habana) ; (64): 1-3, July.-Dec. 2018. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1002719

ABSTRACT

Abstract After the long shut-down, the LHC Run2 has started with new running conditions with respect to Run1: in particular the centre of mass energy has reached 13 TeV and the bunch-spacing is now 25 ns. In order to cope with these changes, the ATLAS luminosity monitor LUCID and its electronics have been completely rebuilt. This note describes the new detector and electronics, the new luminosity algorithms and the new calibration systems, with a brief review of the first results about the stability of the measurement and evaluation of systematic uncertainties for the 2015 data.


Resumen Después de una larga parada, el LHC Run2 comenzó con nuevas condiciones de funcionamiento con respecto al Run1: en particular, el centro de masa energía ha alcanzado los 13 TeV y el espaciamiento entre los grupos es de 25 ns. Para hacer frente a estos cambios, el monitor de luminosidad ATLAS LUCID y su electrónica se han reconstruido por completo. Esta nota describe el nuevo detector y la electrónica, los nuevos algoritmos de luminosidad y los nuevos sistemas de calibración, con una breve revisión de los primeros resultados sobre la estabilidad de la medición y evaluación de incertidumbres sistemáticas para la toma de datos de 2015.

4.
Nucleus (La Habana) ; (55): 19-23, ene.-jun. 2014.
Article in Spanish | LILACS | ID: lil-738990

ABSTRACT

Se realizó un estudio de los riesgos asociados al trabajo con un analizador para el diagnóstico de cámaras gamma. Para ello se utilizó el método Hazard Rating Number, el cual se basa en la determinación del número de riesgo. Los resultados mostraron que los riesgos con mayor HRN son por electrocución con un valor de 100 y por tocar el contenedor de la fuente con las manos, con 75. Estos riesgos se clasificaron como “Muy Alto” y “Alto” respectivamente. Como “Importante” se clasificaron los siguientes riesgos: caída del contenedor de la fuente (HRN = 25), dosis elevada de la muestra en el contenedor (HRN = 20) y fractura del cristal del detector (HRN = 30). El mal blindaje del contenedor de la fuente (HRN = 10) es un riesgo que se clasificó como “Bajo”. Se indican reglas de seguridad para uso del sistema. También se presenta un plan de acción para la gestión de los riesgos.


In this work, a risk analysis for working with an analyzer for gamma cameras diagnostic was made. The method employed is based on determining the Hazard Rating Number (HRN). The results showed that the risks with higher value of HRN are electrocution with 100 and touch source container with hands with 75. These risks were classified as "Very High" and "High" respectively. The following risks were classified as "Important": Fall of the source container (HRN = 25), high dose of the sample in the container (HRN = 20) and fracture of glass detector (HRN = 30). The wrong shielding of the source container (HRN= 10) is a risk that was classified as "Low". Safety rules for use of the system are indicated. An action plan for risk management is also presented.

SELECTION OF CITATIONS
SEARCH DETAIL