Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Chinese Journal of Radiological Medicine and Protection ; (12): 200-204, 2011.
Article in Chinese | WPRIM | ID: wpr-412726

ABSTRACT

Objecttve To compare the positional and volumetric differences of planning target volumes(PTVs)based on axial three-dimensional CT(3D-CT)and four-dimensional CT(4D-CT)for the primary tumor of non-small cell lung cancer(NSCLC).Methods Sixteen NSCLC patients with lesions located in the upper lobe and 12 patients with lesions in middle and lower lobes,totally 28 patients, initially underwent three-dimensional CT scans followed by 4D-CT scans of the thorax under normal free breathing.PTVvector was defined on gross tumor volume (GTV) contoured on 3D-CT and its motion vector. The clinical target volumes(CTVs)were created by adding 7 mm to GTVs,then, internal target volume (ITVs)were produced by enlarging CTVs isotropically based on the individually measured amount of motion in the 4D-CT,lastly,PTVs were created by adding 3 mm setup margin to ITVs. PTV4D was defined on the fusion of CTVs on all phases of the 4D data.The CTV wag generated by adding7 mm to the GTV on each phase.then,PIVs were produced by fusing CTVs on 10 phases and adding 3 mm setup margin.The position of the target center,the volume of target and the degree of inclusion(DI)were compared reciprocally between the PTVvector and the PTV 4D The difference of the position,volume and degree of inclusion of the targets between PTVvecter and PTV4D were compared,and the relevance between the relative characters of the targets and the three-dimensional vector was analyzed based on the groups of the patients. Results The median of the 3 D motion vector for the lesions in the upper lobe was 2.8 mm, significantly lower than that for the lesions in the middle and lower lobe ( 7.0 mm, z = - 3. 485, P < 0. 05 ). In the upper lobe group there was only significant spatial difference between the PTVvector and PTV4D targets in the center coordinate at the x axe (z = -2. 010, P < 0. 05 ), while in the middle and lower lobes there was only significant spatial difference between the PTVvector and PTV4D targets in the center coordinates at the z axe (z = -2. 136,P <0.05). The median of ratio of PTV4D and PTVvector, of the upper lobe group was 0. 75, significantly higher than that of the middle and lower lobes group (0. 52, z = - 2. 949, P < 0. 05 ).A significant correlation was found for the motion vector and the ratio of PTV and PTV4D in both groups ( r = - 0. 638, - 0. 850, P < 0. 05 ). For all patients, the median of D[ of PTV4D in PTVvector was 66. 39% ,while the median of DI of PTVvector, in PTV4D was 99. 55% , both showed a positive significant correlation with the motion vector (r = -0. 814,0. 613 ,P < 0. 05). Conclusions PTV4D defined based on 4D-CT simulation images is obviously less than PTV defined based on 3D-CT simulation images. The ratio and DI of both targets are related with the three-dimensional motion vector of the tumor.

2.
Korean Journal of Medical Physics ; : 241-246, 2008.
Article in Korean | WPRIM | ID: wpr-93135

ABSTRACT

Patient's respiration can have an effect on movement of tumor range and peripheral organs. Therefore, the respiratory signal was acquired by relation between external markers and movement of patient's abdomen during radiational therapy in order to minimize the effect of respiration. Based on this technique, many studies of rational therapy to irradiate at particular part of stable respiratory signals have executed and they have been clinically applied. Nevertheless, the phase-based method is preferred to the amplitude-based method for the rational therapy related to respiration. Because stabilization of the respiratory signal are limited. In this study, a in-house respiratory signal analysis program was developed for the phase reassignment and the analysis of the irregular respiratory signals. Various irregular respiratory patterns was obtained from clinical experimental volunteers. After then, the in-house program analyzed the factors affecting to phase assignment which is directly related to irradiated sector. Subsequently, accuracy of phase assignment was improved with removement of irregular signals by self-developed algorithm. This study is considered to be useful for not only image reconstruction and elevation of irradiating accuracy through phase assignment of RPM system but also analysis of respiratory signals. Moreover, development of 4D CT image is planed with phantom researches or clinical experiments based on this program.


Subject(s)
Abdomen , Four-Dimensional Computed Tomography , Image Processing, Computer-Assisted , Respiration
3.
Korean Journal of Medical Physics ; : 263-268, 2008.
Article in Korean | WPRIM | ID: wpr-93132

ABSTRACT

The application of a respiratory gated radiotherpy method to the lung radiation surgery was evaluated compared with the conventional method in which the whole tumor motion range is considered in the delineation of PTV (Planning target volume). The four dimensional CT simulation images were acquired for the five NSCLC (Non-small cell lung cancer) patients for radiation surgery. The respiratory gated plan was prepared with the 50% phase CT images and the conventional method was planned based on the ITV (Internal target volume) which include all the target volumes created in each phase CT images within a whole respiratory period. The DVH (Dose volume histogram) of OAR (Organ at risk) which calculated in each method was compared for the evaluation of the plan properness. The relative decrease of OARs' DVH were verified in the application of respiratory gated method. The average decrease rate were 16.88+/-9.97% in the bronchus, 34.13+/-19.15% in the spinal cord, 28.42+/-18.49% in the chest wall and 32.48+/-16.66% in the lung. Based on these results, we can verified the applicability and the effectiveness of the respiratory gated method in the lung radiation surgery.


Subject(s)
Humans , Bronchi , Four-Dimensional Computed Tomography , Lung , Spinal Cord , Thoracic Wall
SELECTION OF CITATIONS
SEARCH DETAIL