Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Chinese Journal of Biotechnology ; (12): 1-14, 2024.
Article in Chinese | WPRIM | ID: wpr-1008076

ABSTRACT

The fungal bioluminescence pathway (FBP) is a metabolic pathway responsible for the generation of bioluminescence derived from fungi. This pathway utilizes caffeic acid as the substrate, generating a high-energy intermediate, and the decomposition of which yields green fluorescence with a wavelength of approximately 520 nm. The FBP is evolutionally conserved in luminescent fungal groups. Unlike other bioluminescent systems, the FBP is particularly suitable for engineering applications in eukaryotic organisms, especially in plants. Currently, metabolically engineered luminescent plants are able to emit visible light to illuminate its surroundings, which can be visualized clearly in the dark. The fungal bioluminescent system could be explored in various applications in molecular biology, biosensors and glowing ornamental plants, and even green lighting along city streets.


Subject(s)
Luminescence , Light , Fluorescence , Eukaryota , Green Light
2.
Chinese Pharmacological Bulletin ; (12): 390-396, 2024.
Article in Chinese | WPRIM | ID: wpr-1013633

ABSTRACT

Aim To express and purify recombinant hCGH-CTP fusion protein in high-density suspension culture of Chinese hamster ovary cells (CHO-S), and to verify the lipid accumulation effect of rhCGH-CTP on 3T3-L1 mature adipocytes. Methods The recombinant protein expression vector (pcDNA3. 1-rhCGH-CTP) was constructed, achieved by fusing the human glycoprotein hormone beta 5/alpha 2 cDNA with CTP Linker. The expression plasmid was transiently transfected into the suspended CHO-S to express rhCGH-CTP protein and then purified, and the protein biological activity was verified. Intervention with 3T3-L1 mature adipocyte cells for 24 h was performed to detect the changes of intracellular triglyceride (TG) level. Results Western blot results showed that rhCGH-CTP protein was successfully expressed in CHO-S cells, and the yield was up to 715. 4 mg • L~ . The secreted protein was purified by AKTA pure system with higher purity that was up to 90% as identified by SDS-PAGE. In addition, the intracellular cAMP content of mature adipocytes with high expression of TSHR gene significantly increased after intervention with different concentrations of rhCGH-CTP protein by ELISA kit, indicating that rhCGH-CTP protein had biological activity. Oil red 0 staining showed that compared with the control group, the lipid content of mature adipocytes in the intervention groups with different concentrations of rhCGH-CTP protein significantly decreased (P < 0. 05) . Conclusions The rhCGH-CTP protein has been successfully expressed and purified with biological activity, and effectively reduce TG. This research provides an important theoretical basis for further revealing the physiological role of CGH protein and its potential application in clinical practice.

3.
Chinese Journal of Biologicals ; (12): 604-613, 2023.
Article in Chinese | WPRIM | ID: wpr-996378

ABSTRACT

@#Subunit vaccines are developed from the immunologically active fragments of pathogens and do not have genetic materials,which have been the center of research attention,guiding the direction of the development for new generations of vaccines.Given their safety advantages and high immunological activities,subunit vaccines play important roles in prevention of the spread of pathogenic viruses.This paper mainly introduces the research progress and applications of the subunit vaccines in common viral diseases,aiming to establish a theoretical basis for the development of the subunit vaccines on new viral diseases.

4.
Chinese Pharmacological Bulletin ; (12): 774-781, 2023.
Article in Chinese | WPRIM | ID: wpr-1013819

ABSTRACT

Aim To express and purify rhα-Gal A with a 6 X His tag via using a serum-free expression system in high-density suspension culture of Chinese hamster ovary cells ( CHO-S) , and to verify the scavenging effect of rhα-Gal A on globular trisaccharide ceramide (Gb3 or GL3) . Methods The construction of recombinant protein expression vector, pcDNA4-GLA, was achieved by fusing the human α-galactosidase cDNA, gla, with 6 X His tag and artificial DNA synthesis. The expression plasmid was transfected into the suspended CHO-S to express rhα-Gal A and then purified. Following this procedure, we determined rhα-Gal A's expression, the enzymatic activity, and the glycosylation of the recombinant enzyme. Co-incubation with cultured cells was performed to examine whether rhα-Gal A could be taken up into the cells and effectively remove Gb3 substrates. Results rhα-Gal A was successfully expressed and purified after transiently transfecting pcDNA4-GLA into the suspended CHO-S, and the yield was up to (100 ±20. 6) mg • L

5.
Chinese Journal of Biotechnology ; (12): 2410-2429, 2023.
Article in Chinese | WPRIM | ID: wpr-981209

ABSTRACT

The current linear economy model relies on fossil energy and increases CO2 emissions, which contributes to global warming and environmental pollution. Therefore, there is an urgent need to develop and deploy technologies for carbon capture and utilization to establish a circular economy. The use of acetogens for C1-gas (CO and CO2) conversion is a promising technology due to high metabolic flexibility, product selectivity, and diversity of the products including chemicals and fuels. This review focuses on the physiological and metabolic mechanisms, genetic and metabolic engineering modifications, fermentation process optimization, and carbon atom economy in the process of C1-gas conversion by acetogens, with the aim to facilitate the industrial scale-up and carbon negative production through acetogen gas fermentation.


Subject(s)
Fermentation , Gases/metabolism , Carbon Dioxide/metabolism , Metabolic Engineering , Carbon/metabolism
6.
Chinese Journal of Biotechnology ; (12): 2313-2333, 2023.
Article in Chinese | WPRIM | ID: wpr-981204

ABSTRACT

Rhodotorula toruloides is a non-conventional red yeast that can synthesize various carotenoids and lipids. It can utilize a variety of cost-effective raw materials, tolerate and assimilate toxic inhibitors in lignocellulosic hydrolysate. At present, it is widely investigated for the production of microbial lipids, terpenes, high-value enzymes, sugar alcohols and polyketides. Given its broad industrial application prospects, researchers have carried out multi-dimensional theoretical and technological exploration, including research on genomics, transcriptomics, proteomics and genetic operation platform. Here we review the recent progress in metabolic engineering and natural product synthesis of R. toruloides, and prospect the challenges and possible solutions in the construction of R. toruloides cell factory.


Subject(s)
Gene Editing , Metabolic Engineering , Rhodotorula/metabolism , Lipids
7.
Chinese Journal of Biotechnology ; (12): 2101-2107, 2023.
Article in Chinese | WPRIM | ID: wpr-981192

ABSTRACT

Engineering efficient enzymes or microbial cell factories should help to establish green bio-manufacturing process for chemical overproduction. The rapid advances and development in synthetic biology, systems biology and enzymatic engineering accerleate the establishing feasbile bioprocess for chemical biosynthesis, including expanding the chemical kingdom and improving the productivity. To consolidate the latest advances in chemical biosynthesis and promote green bio-manufaturing, we organized a special issue on chemical bioproduction that including review or original research papers about enzymatic biosynthesis, cell factory, one-carbon based biorefinery and feasible strategies. These papers comprehensively discussed the latest advaces, the challenges as well as the possible solutions in chemical biomanufacturing.


Subject(s)
Synthetic Biology , Carbon , Metabolic Engineering
8.
Chinese Journal of Biotechnology ; (12): 399-424, 2023.
Article in Chinese | WPRIM | ID: wpr-970382

ABSTRACT

The CRISPR-Cas9 system is composed of a clustered regularly interspaced short palindromic repeat (CRISPR) and its associated proteins, which are widely present in bacteria and archaea, serving as a specific immune protection against viral and phage secondary infections. CRISPR-Cas9 technology is the third generation of targeted genome editing technologies following zinc finger nucleases (ZFNs) and transcription activator like effector nucleases (TALENs). The CRISPR-Cas9 technology is now widely used in various fields. Firstly, this article introduces the generation, working mechanism and advantages of CRISPR-Cas9 technology; secondly, it reviews the applications of CRISPR-Cas9 technology in gene knockout, gene knock-in, gene regulation and genome in breeding and domestication of important food crops such as rice, wheat, maize, soybean and potato. Finally, the article summarizes the current problems and challenges encountered by CRISPR-Cas9 technology and prospects future development and application of CRISPR-Cas9 technology.


Subject(s)
Gene Editing , CRISPR-Cas Systems/genetics , Plant Breeding , Crops, Agricultural/genetics , Technology
9.
Indian J Biochem Biophys ; 2022 Aug; 59(8): 793-799
Article | IMSEAR | ID: sea-221557

ABSTRACT

The population of the world is increasing nearly exponentially over time. To feed this population following the environment conservation protocol, it is essential to enhance the agricultural productivity even in the synchronizing agrarian land use pattern. To enhance the quality and productivity in agriculture sector, introducing the cutting edge technology is need of the hour.From ancient times, traditional approaches like selective breeding, adoption of agronomic management practices and application of indigenous technical knowledge have been used to attain resilience against various abiotic and biotic stresses. However, these traditional approaches are not sufficient to tackle the increasing repercussions of climate change and feed quality food to the expanding population. Therefore, in order to address these issues of climate change, population explosion and malnutrition, biotechnological interventions can be a promising approach. In the past, biotechnology based approaches have given successful products like Herbicide-resistant Soybean, Pusa Basmati 1, Bt Cotton, Bt Brinjal, Flavr-Savr tomato, a therapeutically significant product of Lithospermum erythrorhizon and Panax ginseng. Besides that many more need based products are in pipeline which is under scrutiny of regulatory bodies, policymakers and environmentalists. It is profoundly expected that in the coming day’s agricultural biotechnology applications will bring revolutionary changes to existing agricultural scenario. Therefore, in this review, we have summarized the achievement of agricultural biotechnology that is assisting to enhance the agricultural produce to double the income of farmers. However, this much is not enough; hence full utilization of all the sustainable agricultural biotechnological tools must come into the existence that definitely will boost the agricultural productivity.

10.
Article | IMSEAR | ID: sea-218919

ABSTRACT

The production of protein therapeutics in plants it is great potential for increasing, improving and developing the number of therapeutic protein production, therapeutic protein help for the prevention of diseases and treatments in animals and human transgenic plants are the most promising system for the production of a human therapeutic protein. The glycoproteins produced from plants are not the same as a native therapeutic proteins produced in mammals. But using the plants has more advantages such as the low cost and the large scale production is safe. Therefore biological active plant protein has become an alternative option to animal cells for the production of the therapeutic protein.

11.
Pers. bioet ; 26(1): e2613, ene.-jun. 2022.
Article in English | LILACS-Express | LILACS | ID: biblio-1422242

ABSTRACT

Abstract Genetic editing has many applications in almost all areas of society, but may also lead to unpredictable consequences. Genome editing to modify the human germline is at the center of global discussion. Owing to the increasing number of unanswered scientific, ethical, and policy questions, the scientific community agrees that it would be inappropriate to genetically modify embryos. A serious and open debate is necessary to decide whether such research should be suspended or encouraged. Here we show some bold arguments in favor of deleting deleterious genes from the human genome and the risks liberal eugenism poses.


Resumen La edición genética tiene muchas aplicaciones en casi todos los ámbitos de la sociedad, pero también puede tener consecuencias impredecibles. La edición del genoma de la línea germinal humana es el centro de una discusión mundial. Debido al creciente número de cuestionamientos científicos, éticos y políticos, muchos sin una respuesta concreta, el consenso de la comunidad científica manifiesta que sería inapropiado modificar genéticamente embriones humanos. Se considera necesario un debate serio y abierto para decidir si se debe suspender o fomentar la investigación en este sentido. En el presente documento, se exponen algunos argumentos audaces a favor de la eliminación de los genes nocivos del genoma humano y los riesgos que supone el eugenismo liberal.


Resumo A edição de genoma tem muitas aplicações em todos os âmbitos da sociedade, no entanto pode ter consequências imprevisíveis. A edição do genoma da linha germinal humana é o centro de uma discussão mundial. Devido ao número crescente de questionamentos científicos, éticos e políticos, muitos sem resposta concreta, o consenso da comunidade científica manifesta que não seria apropriado modificar geneticamente embriões humanos. Consideramos que é necessário um debate sério e aberto para decidir se é necessário suspender ou fomentar a pesquisa nesse sentido. Aqui mencionamos alguns argumentos audazes a favor da eliminação de genes nocivos do genoma humano e os riscos decorrentes do eugenismo liberal.

12.
Acta Pharmaceutica Sinica ; (12): 150-158, 2022.
Article in Chinese | WPRIM | ID: wpr-913181

ABSTRACT

Exosomes are one of the most important ways of cell-to-cell communication in living lives. They are involved in major physiological and pathological processes, including drug resistance, infection propagation, cancer development and cardiovascular diseases. The biological functions of exosomes made it possess characteristics of low immunogenicity, high delivery efficiency, ability to cross multiple biological barriers and targeting capacity, which also encourage people to try to use it as a drug carrier to overcome the disadvantages of poor stability, low solubility, low bioavailability and high toxicity of some drugs. In this paper, the latest progress of exosomes in the delivery of antitumor drugs, including small chemotherapeutic drugs, biological macromolecules and nucleic acid drugs, is reviewed. In addition, the isolation, drug loading, and modification method and the application prospect of exosomes are also discussed.

13.
Chinese Journal of Experimental Ophthalmology ; (12): 996-998, 2022.
Article in Chinese | WPRIM | ID: wpr-955349

ABSTRACT

Retinal neovascularization (RNV) originating from retinal blood vessels is one of the main pathological features of many ocular diseases that affect vision.It is inseparably linked to choroidal neovascularization and can cause a series of complications, for instance, visual impairment as diseases progress.Pathological manifestations such as RNV and ischemic retinopathy can be constructed in mouse models by laser induction and surgery.With the continuous development of genetic engineering technology, genetic engineering has been applied in the establishment of a variety of RNV mouse models.This article introduced the RNV mouse models of laser-induced venous occlusion, oxygen-induced retinopathy, vascular endothelial growth factor high expression, and double gene knockout.These genetically engineered mouse models can have many clinical manifestations of RNV in humans.Mechanisms of inducing RNV in various types of mouse models are different, thus types and the course of RNV symptoms induced can be different.RNV mouse models induced by various mechanisms have played a role in the pathological study of RNV.This reviewed aimed to sort RNV mouse models for medical staff and researchers to evaluate new treatments for the disease, provide experimental objects for new drugs and lay a basis for clinical diagnosis and treatment.

14.
Chinese Journal of Biotechnology ; (12): 868-881, 2022.
Article in Chinese | WPRIM | ID: wpr-927750

ABSTRACT

Ectoine is an amino acid derivative and an important natural product in halophilic microorganisms. It plays an important role in protecting cells and stabilizing biological macromolecules, and can be widely used in biomedical fields such as drug preparation adjuvants, organ transplantation and preservation, skin wound repair and cosmetics. Due to the medical value and commercial market demand of ectoine, this article summarized the recent advances in the microbial production of ectoine, including the mutation and breeding of hyper-producing strains, construction of genetically and metabolically engineered strains, optimization of fermentation processes, and extraction and purification processes. The application of multi-omics technologies and computational biology to develop an ectoine producing cell factory was prospected, with the aim to provide a reference for ectoine overproduction.


Subject(s)
Amino Acids, Diamino/metabolism , Fermentation
15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 222-232, 2021.
Article in Chinese | WPRIM | ID: wpr-906444

ABSTRACT

The historical evolution, fermentation technology and key links of Sojae Semen Praeparatum (SSP) were sorted out by consulting ancient books and modern literature, and the influencing factors and control methods of quality were analyzed and summarized in order to provide reference for the quality control of SSP. After analysis, it was found that in the fermentation process of SSP, fermentation strains, miscellaneous bacteria, temperature and humidity were all important factors affecting the quality of SSP. The condition control of "post fermentation" process has been paid more attention to in the past dynasties. In addition, the delicious SSP recognized in ancient times should be made from mold fermentation, and the breeding and application of fermented mold may be the key point to solve the quality problem of SSP. Therefore, based on the evaluation indexes of SSP in the past dynasties, it is of great significance to study and optimize the technological conditions such as strain, temperature and humidity in depth to improve the quality of SSP.

16.
Chinese Journal of Biotechnology ; (12): 2956-2966, 2021.
Article in Chinese | WPRIM | ID: wpr-887857

ABSTRACT

Teaching in experiments of biology is important for the cultivation of life science talents. In view of the rapid development of life science and the increasing demand for research-oriented talent training, teaching in experiments of biology should set up a variety of learning outcomes: to train experimental skill, to cultivate students' experimental design and operation abilities, and to improve students' scientific thinking and innovative consciousness. We have carried out an educational reform on experimental genetic engineering blended course. In this paper, we introduced our methods of organizing online materials, the curriculum design of the blended course, the implementation details, and a preliminary analysis of teaching effects. We found that experimental genetic engineering blended course could support students' active learning and a learning-centered teaching model. Moreover, it could facilitate students' achievement of improving experimental skills, cultivating a rigorous scientific attitude, professional research quality and academic innovation ability.


Subject(s)
Humans , Biological Science Disciplines , Curriculum , Genetic Engineering , Students
17.
Acta Pharmaceutica Sinica B ; (6): 1129-1147, 2021.
Article in English | WPRIM | ID: wpr-881189

ABSTRACT

New approaches to cancer immunotherapy have been developed, showing the ability to harness the immune system to treat and eliminate cancer. For many solid tumors, therapy with checkpoint inhibitors has shown promise. For hematologic malignancies, adoptive and engineered cell therapies are being widely developed, using cells such as T lymphocytes, as well as natural killer (NK) cells, dendritic cells, and potentially others. Among these adoptive cell therapies, the most active and advanced therapy involves chimeric antigen receptor (CAR)-T cells, which are T cells in which a chimeric antigen receptor is used to redirect specificity and allow T cell recognition, activation and killing of cancers, such as leukemia and lymphoma. Two autologous CAR-T products have been approved by several health authorities, starting with the U.S. Food and Drug Administration (FDA) in 2017. These products have shown powerful, inducing, long-lasting effects against B cell cancers in many cases. In distinction to the results seen in hematologic malignancies, the field of using CAR-T products against solid tumors is in its infancy. Targeting solid tumors and trafficking CAR-T cells into an immunosuppressive microenvironment are both significant challenges. The goal of this review is to summarize some of the most recent aspects of CAR-T cell design and manufacturing that have led to successes in hematological malignancies, allowing the reader to appreciate the barriers that must be overcome to extend CAR-T therapies to solid tumors successfully.

18.
Chinese Journal of Biotechnology ; (12): 384-394, 2021.
Article in Chinese | WPRIM | ID: wpr-878569

ABSTRACT

Polyhydroxyalkanoates (PHAs) are polymers obtained by esterification of hydroxy fatty acid monomers. Due to similar mechanical characteristics of traditional petroleum-based plastics, 100% biodegradability and biocompatibility, PHAs are considered to be one of the most potential green materials. However, the application and promotion of PHAs as a green and environmentally friendly material are difficult because of the high production costs. This article focuses on the current methods to reduce production cost of PHAs effectively, such as cell morphology regulation, metabolic pathway construction, economic carbon source utilization and open fermentation technology development. Despite most research results are still limited in laboratory, the research methods and directions provide theoretical guidance for the industrial production of economic PHAs.


Subject(s)
Fermentation , Industry , Petroleum , Plastics , Polyhydroxyalkanoates
19.
J Biosci ; 2020 Sep; : 1-24
Article | IMSEAR | ID: sea-214236

ABSTRACT

Genetically engineered plants have varied applications in agriculture for enhancing the values of food and feed.Genetic engineering aims to introduce selected genetic regions with desirable traits into target plants for bothspatial and temporal expressions. Promoters are the key elements responsible for regulating gene expressionsby modulating the transcription factors (TFs) through recognition of RNA polymerases. Based on theirrecognition and expression, RNA polymerases were categorized into RNA pol II and pol III promoters.Promoter activity and specificity are the two prime parameters in regulating the transgene expression. Since theuse of constitutive promoters like Cauliflower mosaic virus (CaMV) 35S may lead to adverse effects on nontarget organisms or ecosystem, inducible/tissue specific promoters and/or the RNA pol III promoters providemyriad opportunities for gene expressions with controlled regulation and with minimum adverse effects.Besides their role in transgene expression, their influence in synthetic biology and genome editing are alsodiscussed. This review provides an update on the importance, current prospects, and insight into the advantagesand disadvantages of promoters reported thus far would help to utilize them in the endeavour to developnutritionally and agronomically improved transgenic crops for commercialization.

20.
Iatreia ; 33(3): 262-272, jul.-set. 2020. tab, graf
Article in Spanish | LILACS | ID: biblio-1143077

ABSTRACT

RESUMEN Dentro del mundo de las ciencias biológicas la terapia génica ha sido un tema llamativo desde su aparición. El desarrollo de nuevas tecnologías y avances en el campo de la bioingeniería como las nucleasas de dedos de zinc (ZFN), las nucleasas tipo activadores de transcripción (TALEN) y las repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas (CRISPR/Cas9), abrieron las puertas a un sinnúmero de posibilidades en biología, entre ellas, la edición del genoma. Esta última consiste en la modificación directa del genoma a través de la introducción o escisión de secuencias nucleotídicas dentro de la hebra de ADN. Hoy en día su aplicación es extensa, desde el campo de la agroindustria y el control de plagas hasta el ámbito clínico con la "corrección" de enfermedades mendelianas, modulación de receptores inmunológicos en enfermedades infecciosas, modificaciones genéticas en líneas germinales, entre muchos otros empleos. Sin embargo, desde su descubrimiento en 1987, el sistema CRIS-PR/Cas9 no ha estado exento de polémica en aspectos bioéticos, la adquisición de su patente e, incluso, en cuanto a su eficacia. A pesar de las dificultades e incertidumbre que han surgido, el futuro del sistema es prometedor dada su sencillez y versatilidad de uso.


SUMMARY In biological sciences, genetic therapy constitutes a "trend topic" since its beginning. Development of new technologies in bioengineering as zinc-finger nucleases (ZFN), Transcription activator-like effector nucleases (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR - Cas9) opened doors to a countless number of possibilities in biology, as genetic edition. Last one consists in a direct genomic modification through nucleotide sequences "introduction" or "cleavage" on DNA strands. Nowadays, its application is wide, since agroindustrial and pest control technologies to clinical area, with correcting mendelian diseases, modulating immunological receptors on infectious diseases, genetic modification in germ cells, among others. Nevertheless, since it's discovered in 1987, CRISPR - Cas9 system has not been exempt from controversy in bioethical aspects, patent acquisition and even about effectiveness. Despite the difficulties and uncertainty that have arisen, the future of the system is promising for its simplicity and versatility.


Subject(s)
Humans , Publishing , DNA , Gene Editing
SELECTION OF CITATIONS
SEARCH DETAIL