Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 306
Filter
1.
Ciênc. Saúde Colet. (Impr.) ; Ciênc. Saúde Colet. (Impr.);29(11): e02672024, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1574697

ABSTRACT

Abstract Ensuring equitable access to healthcare facilities is crucial for urban well-being, but geographical barriers often impede this access. This paper introduces GeoCNES, an open-source tool developed in Python to address this challenge. GeoCNES establishes a connection to the Brazilian national healthcare establishments register and the census data, to process and geocoding them to automatically generate an interactive map that display the distribution of healthcare facilities and a heat map of the same facilities in Brazilian municipalities. To do so the user must enter the municipality code and facility type, then GeoCNES retrieves, geolocates, and exhibit the information in interactive maps. This paper details the development process, functionalities, and limitations of GeoCNES, demonstrating its application in the Brazilian cities of São Carlos-SP, Rondonópolis-MT, Chapecó-SC, Parnamirim-RN and Parauapebas-PA. While challenges related to data inconsistency were encountered, GeoCNES successfully maps healthcare facilities, offering valuable insights for urban planning and promoting equitable access to healthcare.


Resumo Garantir acesso equitativo a unidades de saúde é crucial para o bem-estar urbano, mas barreiras geográficas muitas vezes impedem esse acesso. Este artigo apresenta o GeoCNES, uma ferramenta de código aberto desenvolvida em Python para enfrentar esse desafio. O GeoCNES se conecta ao CNES e aos dados censitários brasileiros e aplica técnicas de geocodificação para gerar automaticamente mapas interativos que mostram a distribuição de unidades de saúde e sua concentração por meio de mapas de calor, em municípios brasileiros. Os usuários utilizam código do município e o tipo de unidade a ser analisado como parâmetros, e o GeoCNES recupera, geolocaliza e exibe os dados em mapas. Este artigo detalha o processo de desenvolvimento, funcionalidades e limitações do GeoCNES, demonstrando sua aplicação nas cidades de São Carlos-SP, Rondonópolis-MT, Chapecó-SC, Parnamirim-RN e Parauapebas-PA. Embora tenham sido encontrados desafios relacionados à inconsistência de dados, o GeoCNES é capaz de mapear com sucesso as unidades de saúde de diferentes regiões do país e gerar mapas com potencial para auxiliar no planejamento urbano voltado para a equidade na saúde.


Resumen Garantizar un acceso equitativo a las unidades de salud es crucial para el bienestar urbano, pero las barreras geográficas a menudo obstaculizan este acceso. Este artículo presenta GeoCNES, una herramienta de código abierto desarrollada en Python para abordar este desafío. GeoCNES se conecta al CNES y a los datos censales brasileños y aplica técnicas de geocodificación para generar automáticamente mapas interactivos que muestran la distribución de las unidades de salud y su concentración a través de mapas de calor en municipios brasileños. Los usuarios utilizan el código municipal y el tipo de unidad a analizar como parámetros, y GeoCNES recupera, geolocaliza y muestra los datos en mapas. Este artículo detalla el proceso de desarrollo, las funcionalidades y las limitaciones de GeoCNES, demostrando su aplicación en las ciudades de São Carlos-SP, Rondonópolis-MT, Chapecó-SC, Parnamirim-RN y Parauapebas-PA. Aunque se encontraron desafíos relacionados con la inconsistencia de datos, GeoCNES es capaz de mapear con éxito las unidades de salud de diferentes regiones del país y generar mapas con potencial para ayudar en la planificación urbana orientada a la equidad en la salud.

2.
Rev. saúde pública (Online) ; 58: 11, 2024. tab, graf
Article in English | LILACS | ID: biblio-1560453

ABSTRACT

ABSTRACT OBJECTIVE To evaluate, using spatial analysis, the occurrence of American Cutaneous Leishmaniasis (ACL) and analyze its association with the municipal human development index (MHDI) and deforestation in the state of Amazonas, Brazil, from 2016 to 2020. METHODS This ecological study, carried out from January 2016 to December 2020, included the 62 municipalities of the state of Amazonas. The incidence rate of ACL was determined in space and time. Using Multiple Linear Regression by Ordinary Least Squares (OLS) and Spatial Autoregressive Regression (SAR) models, the relationship between incidence rates and Human Development Index (HDI) and deforestation was analyzed., The high- and low-risk clusters were identified by employing the Getis-Ord Gi* statistic. RESULTS A total of 7,499 cases of ACL were registered in all 62 municipalities in the state. Most cases were in male (n=5,924; 79.24%), with the greatest frequency in the population aged from 20 to 39 years (n=3,356; 44.7%). The incidence rate in the state of Amazonas was 7.34 cases per 100,000 inhabitants-year, with the municipalities of Rio Preto da Eva and Presidente Figueiredo showing the highest rates (1,377.5 and 817.5 cases per 100,000 population-year, respectively). The ACL cases were clustered into specific areas related to those municipalities with the highest incidence rates. The SAR model revealed a positive relationship between ACL and deforestation. CONCLUSIONS The occurrence of ACL was evident in a variety of patterns in the state of Amazonas; the high incidence rates and persistence of this disease in this state were linked to deforestation. The temporal distribution showed variations in the incidence rates during each year. Our results can help optimize the measures needed to prevent and control this disease in the state.


Subject(s)
Humans , Male , Female , Leishmaniasis, Cutaneous , Geographic Information Systems , Epidemiological Monitoring , Spatial Analysis
3.
Rev. bras. epidemiol ; Rev. bras. epidemiol;27: e240008, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1535584

ABSTRACT

ABSTRACT Objective: To analyze spatial distribution of preterm births and their association with maternal, social, and health services indicators in the metropolitan region of São Paulo, Brazil, 2010-2019. Methods: Ecological study using data on preterm newborns from 39 municipalities in the metropolitan region of São Paulo. Univariate global Moran's index (Im) was used to evaluate spatial association of prematurity, and univariate local Moran's index by using the cluster map (LISA) to identify spatial patterns and clusters. Bivariate global Moran's index was also used to analyze spatial autocorrelation with maternal, social, and health services indicators. Results: A total of 3,103,898 live births were registered in period 2010-2019, of which 331,174 (10.7%) were preterm. The global Moran's index showed spatial independence (Im=0.05; p-value=0.233) of the proportion of preterm births between municipalities. However, in the local spatial analysis it was possible to identify a statistically significant spatial cluster between the municipalities of Biritiba Mirim, Guararema and Salesópolis, with high proportions of preterm births. In the bivariate analysis, a significant positive spatial association was identified with proportions of mothers under 20 years old (Im=0.17; p-value=0.024) and mothers with low schooling (Im=0.17; p-value=0.020), and a significant negative spatial association with HDI (Im=-0.14; p-value=0.039). Conclusions: The local spatial approach identified a spatial cluster located in the far east of the metropolitan region of São Paulo, where actions by health managers are needed to minimize occurrence of preterm births.


RESUMO Objetivo: Analisar a distribuição espacial dos nascimentos prematuros e sua associação com indicadores maternos, sociais e de serviços de saúde na região metropolitana de São Paulo, Brasil, 2010-2019. Métodos: Estudo ecológico utilizando dados sobre recém-nascidos pré-termo dos 39 municípios da região metropolitana de São Paulo. Utilizou-se o índice de Moran (Im) global univariado para avaliar a associação espacial da prematuridade, e o índice de Moran local univariado por meio do mapa de clusters (LISA) para a identificação de padrões e aglomerados espaciais. Também foi utilizado o índice de Moran global bivariado para analisar a autocorrelação espacial com os indicadores maternos, sociais e de serviços de saúde. Resultados: Foram registrados 3.103.898 nascidos vivos no período 2010-2019, dos quais 331.174 (10,7%) foram prematuros. O índice de Moran global mostrou independência espacial (Im=0,05; p-valor=0,233) da proporção dos nascimentos prematuros entre municípios. No entanto, na análise espacial local foi possível identificar aglomerado espacial estatisticamente significativo entre os municípios de Biritiba Mirim, Guararema e Salesópolis, com proporções altas de nascimentos pré-termo. Na análise bivariada, identificou-se associação espacial significativa positiva com proporções de mães menores de 20 anos (Im=0,17; p-valor=0,024) e mães com baixa escolaridade (Im=0,17; p-valor=0,020), e associação espacial significativa negativa com IDH (Im=-0,14; p-valor=0,039). Conclusão: A abordagem espacial local identificou agrupamento espacial situado no extremo leste da região metropolitana de São Paulo, onde ações dos gestores de saúde são necessárias para minimizar a ocorrência de partos prematuros.

4.
Einstein (São Paulo, Online) ; 22: eAO0931, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1550238

ABSTRACT

ABSTRACT Objective: This study aimed to present a temporal and spatial analysis of the 2018 measles outbreak in Brazil, particularly in the metropolitan city of Manaus in the Amazon region, and further introduce a new tool for spatial analysis. Methods: We analyzed the geographical data of the residences of over 7,000 individuals with measles in Manaus during 2018 and 2019. Spatial and temporal analyses were conducted to characterize various aspects of the outbreak, including the onset and prevalence of symptoms, demographics, and vaccination status. A visualization tool was also constructed to display the geographical and temporal distribution of the reported measles cases. Results: Approximately 95% of the included participants had not received vaccination within the past decade. Heterogeneity was observed across all facets of the outbreak, including variations in the incubation period and symptom presentation. Age distribution exhibited two peaks, occurring at one year and 18 years of age, and the potential implications of this distribution on predictive analysis were discussed. Additionally, spatial analysis revealed that areas with the highest case densities tended to have the lowest standard of living. Conclusion: Understanding the spatial and temporal spread of measles outbreaks provides insights for decision-making regarding measures to mitigate future epidemics.

5.
Rev. Bras. Saúde Mater. Infant. (Online) ; 24: e20230016, 2024. tab, graf
Article in English | LILACS | ID: biblio-1558992

ABSTRACT

Abstract Objectives: to describe the prevalence of malnutrition (underweight, low height, and overweight) in children aged six to 59 months and its spatial distribution in the city of Beira, Mozambique. Methods: an exploratory cross-sectional study was conducted between October and November 2019, involving 407 children aged six to 59 months. The sample size calculation was based on the prevalence of height-for-age deficit. Anthropometric data were analyzed using Anthro version and the prevalence of malnutrition was presented through thematic maps generated in Quantum Geographic Information System (QGIS). Results: the main findings revealed a prevalence of 27.0% for low height/age, 7.9% for underweight/height, and 4.7% for overweight. Conclusions: the spatial distribution highlighted that both urban and peri-urban areas of the city showed similar prevalence rates for the three forms of malnutrition. The prevalence of malnutrition in Beira is high, with deficit height/age being the most significant expression, while overweight is diffusely distributed.


Resumo Objetivos: descrever a prevalência da má nutrição (baixo peso, baixa estatura e excesso de peso) em crianças de seis a 59 meses e sua distribuição espacial na cidade de Beira, Moçambique. Métodos: estudo transversal exploratório, realizado entre outubro e novembro de 2019, incluindo 407 crianças de seis a 59 meses. O cálculo da amostra foi baseado na prevalência do déficit estatura/idade. Os dados antropométricos foram analisados no Anthro e a prevalência de má nutrição apresentada por meio de mapas temáticos no Quantum Geographic Information System (QGIS). Resultados: os principais resultados mostram uma prevalência de 27,0% de baixa estatura/idade, 7,9% de baixo peso/estatura e 4,7% de excesso de peso. Conclusões: a distribuição espacial evidenciou que as áreas urbanas e periurbanas da cidade apresentavam prevalências similares das três formas de má nutrição. A prevalência da má nutrição em Beira é alta, embora o déficit estatura/idade seja a sua maior expressão, estando o excesso de peso difusamente distribuído.


Subject(s)
Humans , Infant , Child, Preschool , Body Weights and Measures , Child Nutrition Disorders/epidemiology , Infant Nutrition Disorders/epidemiology , Malnutrition/epidemiology , Stature by Age , Overweight , Mozambique
6.
Rev. peru. med. exp. salud publica ; 40(4): 413-422, oct.-dic. 2023. graf
Article in Spanish | LILACS | ID: biblio-1560387

ABSTRACT

RESUMEN Objetivo. Identificar las áreas de mayor concentración de accidentes de tránsito y lesionados en el Área Metropolitana de San Salvador (AMSS). Materiales y métodos. Los accidentes de tránsito se analizaron espacialmente mediante la ubicación puntual y por la sumatoria de eventos en áreas de 200 m2. La ubicación puntual se analizó mediante «análisis de vecinos más cercanos¼, mientras que las áreas con la sumatoria de accidentes de tránsito se analizaron mediante Gi* de Getis-Ord para obtener los puntos calientes. Los puntos calientes resultantes con mayor concentración de accidentes de tránsito en el AMSS se evaluaron en campo mediante un formulario de observación de las características de infraestructura y seguridad vial. Resultados. Al analizar 8191 accidentes de tránsito reportados entre 2014‒2018, se identificaron cinco áreas con mayor cantidad de accidentes de tránsito y lesionados, principalmente sobre vías primarias. Conclusión. Los sitios de mayor concentración de accidentes de tránsito y lesionados se caracterizan por una infraestructura vial con daños considerables y falta de sistemas de seguridad para conductores y peatones. El análisis espacial de los accidentes de tránsito y lesionados puede contribuir a mejorar la vigilancia y seguridad vial en el AMSS.


ABSTRACT Objective. This study aimed to identify the areas with the highest concentration of traffic accidents and injuries in the San Salvador Metropolitan Area (SSMA). Materials and methods. Traffic accidents were analyzed spatially by point location and by the sum of events in areas of 200 m2. The point location was analyzed by "nearest neighbor analysis", while the areas with the sum of traffic accidents were analyzed by Getis-Ord Gi* to obtain the hot spots. The resulting hot spots with the highest concentration of traffic accidents in the SSMA were evaluated in the field using an observation form to collect data on infrastructure and road safety characteristics. Results. Five areas with the highest number of traffic accidents and injuries, mainly containing primary roads, were identified by analyzing 8191 traffic accidents reported between 2014-2018. Conclusion. The sites with the highest concentration of traffic accidents and injuries were characterized by considerably damaged road infrastructure and the lack of safety systems for drivers and pedestrians. The spatial analysis of traffic accidents and injuries can contribute to improve surveillance and road safety in the SSMA.


Subject(s)
Humans , Male , Female , Geographic Information Systems , Accident Prevention
7.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1535264

ABSTRACT

Objetivo: Estimar los años potenciales de vida perdidos y la distribución espacial de la mortalidad por incidente vial según modo de transporte en Medellín 2010-2020, como línea base para la implementación de la estrategia Visión Cero, de la Organización Mundial de la Salud, en la movilidad de la ciudad. Metodología: Estudio retrospectivo y descriptivo de corte transversal, con fuente secundaria. El cálculo de los años potenciales de vida perdidos se hizo tomando como edad límite la esperanza de vida al nacer de Colombia, según año y género. El análisis espacial se realizó a partir de la dirección del incidente; la representación de la densidad de Kernel fue por el método de clasificación estándar-cuantil, y las zonas de influencia se crearon por el método búfer de anillos múltiples, con distancias de 500 y 1000 metros. Resultados: Medellín, entre 2010 y 2020, registró 2988 muertes por incidente vial. Quienes más murieron fueron los peatones, con 1423 (47,6 %) muertes, seguidos por los motociclistas, con 1295 (43,3 %). Los años potenciales de vida perdidos fueron 98 787. Las comunas de mayor concentración en muerte de peatones fueron: Candelaria, Buenos Aires y Manrique; en motociclistas, la mayor concentración se evidenció en el sistema vial del río. Por zonas de influencia, los peatones fallecidos en un radio de 1000 metros del sistema vial del río fueron 688 (49,8 %), y los motociclistas, 636 (52,2 %). Conclusión: Los motociclistas fueron quienes murieron más jóvenes y más años dejaron de vivir. Politraumatismos son diagnósticos constantes de muerte, pero lesiones en cabeza, cráneo y tórax son más letales en peatones y motociclistas.


Objective: To estimate the potential years of life lost and the spatial distribution of mortality from road incidents by mode of transport in Medellín 2010-2020, as a baseline for the implementation of the Vision Zero strategy of the World Health Organization in the city's mobility. Methodology: This is a retrospective and descriptive cross-sectional study, with a secondary source. The calculation of the potential years of life lost was made using the life expectancy at birth in Colombia as the age limit, according to year and gender. The spatial analysis was carried out from the direction of the incident; Kernel density was represented by the standard-quantile classification method, and the zones of influence were created by the multiple ring buffer method, with distances of 500 and 1000 meters. Results: Between 2010 and 2020, Medellín registered 2,988 deaths due to road incidents. Those who died the most were pedestrians, with 1,423 (47.6%) deaths, followed by motorcyclists, with 1,295 (43.3%). Potential years of life lost were 98,787. The zones (comunas) with the highest concentration of pedestrian deaths were: Candelaria, Buenos Aires and Manrique; in motorcyclists, the highest concentration was evidenced in the river road system. By areas of influence, pedestrians killed within a radius of 1,000 meters from the river road system were 688 (49.8%), and motorcyclists, 636 (52.2%). Conclusion: Motorcyclists were the ones who died the youngest and the most years they stopped living. Polytrauma is a constant diagnosis of death, but injuries to the head, skull and thorax are more lethal in pedestrians and motorcyclists.


Objetivo: Estimar os anos potenciais de vida perdidos e a distribuição espacial da mortalidade por incidente de trânsito segundo o modo de transporte em Medellín 2010-2020, como linha base para a implementação da estratégia Visão Zero, da Organização Mundial da Saúde, na mobilidade da cidade. Metodologia: Estudo retrospectivo e descritivo de corte transversal, com fonte secundária. O cálculo dos anos potenciais de vida perdidos foi feito considerando como idade limite a esperança de vida ao nascer da Colômbia, segundo ano e gênero. A análise espacial realizou-se a partir do local do incidente; a representação da densidade de Kernel foi pelo método de classificação padrão-quantil, e as zonas de influência criaram-se pelo método buffer de anéis múltiplos, com distâncias de 500 e 1000 metros. Resultados: Medellín, entre 2010 e 2020, registrou 2988 mortes por incidente de trânsito. O maior número de mortes foi de pedestres, sendo 1423 (47,6%), seguido pelo de motoqueiros, sendo 1295 (43,3%). Os anos potenciais de vida perdidos foram 98.787. As localidades com maior concentração de mortes de pedestres foram: Candelaria, Buenos Aires e Manrique; no caso dos motoqueiros, a maior concentração evidenciou-se no sistema viário do rio. Por zonas de influência, os pedestres falecidos em um raio de 1000 metros do sistema viário do rio foram 688 (49,8%), e os motoqueiros 636 (52,2%). Conclusão: Os motoqueiros foram quem morreram mais novos e mais anos deixaram de viver. Politraumatismos são diagnósticos constantes de morte, mas lesões na cabeça, no crâneo e no tórax são mais letais em pedestres e motoqueiros.

8.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1535269

ABSTRACT

Objetivo: Realizar un análisis geoespacial del comportamiENTo de sobrepeso y obesidad basado en la "Encuesta Nacional de Situación Nutricional" de 2015. Metodología: Se aplica un modelo de análisis geoespacial de distribución espacial trasversal a partir de la Encuesta, a escala departamENTal. Para lograrlo, se calculan las prevalencias de sobrepeso, obesidad clase i, ii y iii según el índice de masa corporal y la obesidad abdominal en mujeres y hombres de acuerdo con la circunferencia de cintura. Se utilizan herramiENTas de sistemas de información geográfica, como el índice de Moran Global, el índice local de autocorrelación espacial (lisa) y el G* Getis Ord, para determinar los patrones de agrupaciones altas y bajas prevalencias. Resultados: Los conglomerados locales ilustrados en los mapas demuestran que sus residuales están distribuidos normalmENTe en el espacio. Se observa una aleatoriedad en el modelo de la autocorrelación espacial. Las agrupaciones de lisa alta-alta se presENTan en diez departamENTos con estas condiciones (La Guajira, Magdalena, Atlántico, Sucre, Cesar, Norte de Santander, Córdoba, Antioquia, Chocó y Cundinamarca). Según el índice de masa corporal, el 38,5 por cada 100 habitantes tienen sobrepeso; el 20,9 por cada 100 habitantes presENTa obesidad, y según la circunferencia de cintura, 53,2 por cada 100 habitantes tiene obesidad abdominal. Conclusiones: La distribución espacial del sobrepeso y la obesidad puede estar condicionada con variables sociodemográficas tratadas en el estudio. El país tiene el reto de continuar implemENTando acciones poblacionales en salud pública para disminuir estas condiciones.


Objective: To carry out a geospatial analysis of the behavior of overweight and obesity based on the "National Survey of Nutritional Situation" of 2015. Methodology: A geospatial analysis model of transversal spatial distribution is applied from the Survey, on a departmENTal scale. To achieve this, the prevalence of overweight, class I, II and III obesity according to body mass index and abdominal obesity in women and men according to waist circumference are calculated. Geographic information system tools, such as the Global Moran Index, Local Spatial Autocorrelation Index (LISA), and G* Getis Ord, are used to determine patterns of high clustering and low prevalence. Results: The local clusters illustrated on the maps demonstrate that their residuals are normally distributed in space. A randomness is observed in the spatial autocorrelation model. High-high LISA clusters occur in ten departmENTs with these conditions (La Guajira, Magdalena, Atlántico, Sucre, Cesar, Norte de Santander, Córdoba, Antioquia, Chocó and Cundinamarca). According to the body mass index, 38.5 per 100 inhabitants are overweight; 20.9 per 100 inhabitants are obese, and according to waist circumference, 53.2 per 100 inhabitants have abdominal obesity. Conclusions: The spatial distribution of overweight and obesity may be conditioned by the sociodemographic variables treated in the study. The country has the challenge of continuing to implemENT population actions in public health to reduce these conditions.


Objetivo: Realizar uma análise geoespacial do comportamENTo do sobrepeso e da obesidade com base na "Pesquisa Nacional de Situação Nutricional" de 2015. Metodologia: Aplica-se um modelo de análise geoespacial de distribuição espacial transversal da Pesquisa, em escala departamENTal. Para isso, calcula-se a prevalência de sobrepeso, obesidade graus I, II e III segundo o índice de massa corporal e obesidade abdominal em mulheres e homens segundo a circunferência da cintura. As ferramENTas do sistema de informações geográficas, como o Índice de Moran Global, o Índice de Autocorrelação Espacial Local (Smooth) e o G* Getis Ord, são usadas para determinar padrões de alto agrupamENTo e baixa prevalência. Resultados: Os clusters locais ilustrados nos mapas demonstram que seus resíduos são normalmENTe distribuídos no espaço. Uma aleatoriedade é observada no modelo de autocorrelação espacial. Grupos de tainhas alto-alto ocorrem em dez departamENTos com essas condições (La Guajira, Magdalena, Atlântico, Sucre, Cesar, Norte de Santander, Córdoba, Antioquia, Chocó e Cundinamarca). De acordo com o índice de massa corporal, 38,5 por 100 habitantes estão acima do peso; 20,9 por 100 habitantes são obesos e, segundo a circunferência da cintura, 53,2 por 100 habitantes têm obesidade abdominal. Conclusões: A distribuição espacial do sobrepeso e da obesidade pode estar condicionada pelas variáveis sociodemográficas tratadas no estudo. O país tem o desafio de continuar implemENTando ações populacionais em saúde pública para reduzir esses agravos.

9.
FAVE, Secc. Cienc. vet. (En línea) ; 22: 5-5, jun. 2023. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1574892

ABSTRACT

Resumen La Cuña Boscosa Santafesina ha sufrido desmontes que causaron fragmentación y deterioro. Los suelos se destinaron a la actividad ganadera y agrícola, con labranza tradicional, favoreciendo procesos de erosión hídrica. La Ecuación Universal de Pérdida de Suelo es ampliamente utilizada para predecir la pérdida de suelo, siendo el factor C (cobertura y manejo), uno de los principales componentes. Para su determinación se pueden utilizar imágenes satelitales, siendo el objetivo de este trabajo obtenerlo para un sitio de la Cuña Boscosa. Para esto, se delimitó una microcuenca con Sistemas de Información Geográfica e información satelital. Se identificaron sectores según el uso del suelo y se obtuvo el factor C utilizando el Índice de Vegetación de Diferencia Normalizada de doce imágenes del período de julio de 2020 a mayo de 2021. Los valores obtenidos también fueron comparados con las precipitaciones diarias de la zona. Como resultado se generaron mapas del factor C para cada fecha y para el valor promedio del período estudiado. Aunque el factor C promedio en sectores de vegetación natural fue similar al del sector cultivado, este último presentó una mayor variación que acompañó al desarrollo de los cultivos. Además, las tierras cultivadas presentaron menor cobertura vegetal en los períodos de mayores precipitaciones, dejando al suelo expuesto al efecto erosivo de la lluvia. Esta metodología es promisoria para cuantificar el factor C durante el ciclo de un cultivo y evaluar su dinamismo espacio-temporal, pero deberá validarse con datos de campo.


Abstract The Cuña Boscosa Santafesina has suffered deforestation that caused fragmentation and deterioration. The soils were used for livestock and agricultural activities with traditional tillage, favouring water erosion processes. The Universal Soil Loss Equation is widely used to predict soil loss, with C factor (cover and management) being one of the main components. For its determination, satellite imagery can be used, being the objective of this paper to obtain it for a site of the Cuña Boscosa. To achieve this, a micro-basin was delimited with Geographic Information Systems and satellite information. Sectors were identified according to the land use and the C factor was obtained using the Normalized Difference Vegetation Index of twelve images from the period July 2020 to May 2021. The values obtained was compared with daily rainfall in the area. As results, C factor maps were generated for each date and for the average value of the period studied. Although the average C factor in sectors of natural vegetation was similar to that of the cultivated sector, the latter presented a greater variation that accompanied the development of the crops. In addition, cultivated land had less vegetal cover in periods of higher rainfall, leaving the ground exposed to the erosive effect of the rain. This methodology is promising for quantifying C factor during a crop cycle and evaluate is spatio-temporal dynamism, but it must be validated with field data.

10.
Article | IMSEAR | ID: sea-226923

ABSTRACT

Governments worldwide focus particularly on digital healthcare sensors for leveraging data and technology like Geographic Information Systems (GIS) to improve governance and service delivery. Geoinformatics technology can help with epidemiological research and outbreak response, minimizing the health consequences in communities beforehand, during, and then after epidemic episodes. We can all agree that location and time play a crucial role in carrying out an efficient public health response. Since location information is essential for every stage of planning, response, and recovery, GIS helps the location-based support of public health preparedness programmes like support for decisions, resource allocation, communication and collaboration, and civic participation. GIS scales to situations ranging from adverse weather to pandemics. Public health professionals can coordinate their efforts with those of other organizations and external stakeholders due to maps and apps. The public health preparedness community may achieve significant strides by incorporating GIS data, models, communication and engagement centres, and location-centric apps. GIS technology can help with this efficient method for gathering data, performing analysis, where they are most needed, interacting with decision-makers, and finally achieving health equity can be created with the aid of a location-based strategy. During COVID-19, this reality was disseminated more extensively through the news media and the national, state, and local governments. This paper evaluates the application of GIS in the Indian public health system and the various aspects of public health where GIS may emerge as a game-changer for future policy decisions.

11.
Article in Chinese | WPRIM | ID: wpr-964930

ABSTRACT

Background In the context of improving urban environment for healthy aging, it is necessary to rationally plan and provide community living space and public service facilities suitable for the elderly, and constantly optimize the built environment towards an age-friendly city. Objective To understand the relationship between community built environment and obesity in the elderly in Longgang City, and to provide a reference basis for improving the health of the elderly. Methods Elderly adults aged 60-90 years (n=6527) who completed a physical examination during the period from October 2020 to January 2021 in Longgang City were surveyed, and data on height and weight, waist circumference (WC), and other sociological demographic characteristics were obtained. Overweight was determined by 24 kg·m−2 ≤ body mass index (BMI) < 28 kg·m−2 and obesity by BMI ≥ 28 kg·m−2. Men with WC ≥ 85 cm and women with WC ≥ 80 cm were considered central obesity. Based on the participants' residential addresses, geocoding was performed using a geographic information system, and built environment indicators such as restaurants, convenience stores, and basic medical facilities were obtained using Gaode Map. A binary logistic regression model with adjusted individual-level covariates was used to evaluate the relationship between obesity and built environment indicators among elderly adults by gender and age. Results Among the 6527 community elderly, 46.93% were male and 53.07% were female, with a mean age of (73.69±0.07) years, a mean BMI of (24.32±2.84) kg·m−2, and 51.92% of the elderly were overweight or obese. The regression results showed that for elderly men, the more convenience stores and the higher mixed land use in residential areas, the higher risk of central obesity; however, the increases in street connectivity and accessibility to parks and recreational areas were associated a decreased risk of central obesity. The prevalence of overweight/obesity was higher among elderly women with more convenience stores in residential areas, while increased street connectivity was associated with a lower prevalence of central obesity among elderly women. Accessibility to primary health care facilities was negatively associated with the risk of central obesity among the 60- to 70-year-olds. For elderly residents aged 71−80 years, higher mixed land use and better accessibility to transit stations were associated with a higher prevalence of overweight/obesity, while street connectivity was negatively associated with the central obesity. Proximity to parks and recreational areas was associated with a reduced risk of overweight/obesity among the 81- to 90-year-olds. Conclusion Among the variables of a 500-m neighborhood built environment, the number of convenience stores, mixed land use, street connectivity, accessibility to primary health care facilities, accessibility to public transit stations, and accessibility to parks and recreational areas are correlated with obesity among elderly residents, and the degree of influence varies by gender and age.

12.
Chinese Journal of Endemiology ; (12): 139-143, 2023.
Article in Chinese | WPRIM | ID: wpr-991593

ABSTRACT

Objective:To learn about the iodine nutrition level and its spatial distribution status in key populations in Hubei Province, so as to provide a basis for adjustment of iodine supplementation policy and the realization of scientific and accurate iodine supplementation.Methods:In 2020, a sampling was carried out in Hubei Province according to the "National Iodine Deficiency Disorders Monitoring Plan (2016 Edition)" to monitor the concentration of salt iodine and urinary iodine of key populations (children ages 8 - 10 years old and pregnant women). The spatial distribution of iodine nutrition levels was analyzed by spatial epidemiology.Results:The median salt iodine of 17 263 children's family salt samples was 25.0 mg/kg, and the median urinary iodine (MUI) was 217.0 μg/L. There was significant spatial aggregation in the distribution of urinary iodine level in children at the county level ( Moran's Index = 0.36, P < 0.001). The significant hot spot areas with high urinary iodine level among children were located in Shiyan City and Xiangyang City, while the significant cold spot areas with low urinary iodine level were mainly concentrated in Yichang City. The median salt iodine of 8 618 pregnant women's family salt samples was 25.1 mg/kg, the MUI was 176.3 μg/L. The urinary iodine level among pregnant women at the county level was spatially clustered ( Moran's Index = 0.22, P = 0.003) . The significant hot spot areas with high urinary iodine level among pregnant women were mainly in Enshi Tujia and Miao Autonomous Prefecture, the significant cold spot areas were mainly concentrated in Yichang City. Conclusions:In 2020, the iodine nutrition of children in Hubei Province is at a super appropriate level (200 - 299 μg/L), and the iodine nutrition status of pregnant women is more sensitive, which is close to the lower limit of the appropriate level (150 μg/L). The urinary iodine level of children and pregnant women has significant spatial aggregation at the county level. Targeted intervention will be needed in counties (dictricts) where the urinary iodine level is lower or higher than the normal range, to achieve accurate and scientific iodine supplementation.

13.
Rev. bras. enferm ; Rev. bras. enferm;76(supl.2): e20220216, 2023. tab, graf
Article in English | LILACS-Express | LILACS, BDENF | ID: biblio-1407488

ABSTRACT

ABSTRACT Objective: To analyze the spatial pattern of tuberculosis in Indigenous peoples from the State of Pará and its correlation with income transfer. Methods: Ecological study, with 340 cases reported in Indigenous peoples in the State of Pará, Brazil, in the period 2016-2020. The study performed a descriptive analysis and calculation of incidence rates with smoothing by the local empirical Bayesian method. The Global Moran index assessed the autocorrelation of the rates with income transfer data, p<0,05. Results: The Marajó and metropolitan mesoregions of Belém had the highest tuberculosis rates, and a reduced number of people benefited from income transfer (high-low correlation). The study identified high rates, and a significant number of people benefited from financial aid (high correlation high), I=0.399, p=0.027 in the Southwest. Conclusions: The spatial autocorrelation between tuberculosis and access to income transfer programs constitutes a relevant subsidy for the formulation of social protection policies and may impact the disease control actions in Indigenous territories, valuing the epidemiological heterogeneity identified in the mesoregions.


RESUMEN Objetivo: Analizar patrón espacial de tuberculosis en indígenas de Pará y su correlación con transferencia de renta. Métodos: Estudio ecológico, con 340 casos notificados en indígenas en Pará/Brasil, entre 2016-2020. Realizado análisis descriptivo y cálculo de tasas de incidencia con moderación por el método bayesiano empírico local. Hecho autocorrelación de tasas con datos de transferencia de renta por Moran Global, p<0,05. Resultados: Las mesorregiones Marajó y Metropolitana de Belém presentaron las tasas de tuberculosis mayores y reducido número de personas beneficiadas con transferencia de renta (correlación alto-bajo). En el Sudoeste, identificaron tasas elevadas y número significativo de personas beneficiadas con auxilios financieros (correlación alto-alto), I=0,399, p=0,027. Conclusiones: La autocorrelación espacial entre tuberculosis y acceso a programas de transferencia de renta constituye importante subsidio para formulación de políticas de protección social, pudiendo impactar las acciones de control de la enfermedad en territorios indígenas, valorizando la heterogeneidad epidemiológica identificada en las mesorregiones.


RESUMO Objetivo: Analisar o padrão espacial de tuberculose em indígenas do Pará e sua correlação com transferência de renda. Métodos: Estudo ecológico, com 340 casos notificados em indígenas no Pará/Brasil, no período 2016-2020. Realizou-se análise descritiva e cálculo das taxas de incidência com suavização pelo método bayesiano empírico local. Fez-se autocorrelação das taxas com dados de transferência de renda pelo Moran Global, p<0,05. Resultados: As mesorregiões Marajó e Metropolitana de Belém apresentaram as taxas de tuberculose mais elevadas e reduzido número de pessoas beneficiadas com transferência de renda (correlação alto-baixo). No Sudoeste, identificaram se taxas elevadas e número significativo de pessoas beneficiadas com os auxílios financeiros (correlação alto alto), I=0,399, p=0,027. Conclusões: A autocorrelação espacial entre tuberculose e acesso a programas de transferência de renda constitui importante subsídio para formulação de políticas de proteção social, podendo impactar as ações de controle da doença nos territórios indígenas, valorizando a heterogeneidade epidemiológica identificada nas mesorregiões.

14.
Rev. Soc. Bras. Med. Trop ; Rev. Soc. Bras. Med. Trop;56: e0612, 2023. graf
Article in English | LILACS-Express | LILACS, SES-SP, SESSP-ILSLPROD, SES-SP, SESSP-ILSLACERVO, SES-SP | ID: biblio-1431402

ABSTRACT

ABSTRACT Background: Brazil has the second largest number of leprosy cases worldwide, and the state of São Paulo has been considered non-endemic since 2006. Methods: We analyzed 16 variable number tandem repeats loci and three single nucleotide polymorphisms loci of Mycobacterium leprae (M. leprae) in 125 clinical isolates from patients in different municipalities in the state. Results: The clustering pattern of M. leprae indicated that the transmission of leprosy persisted in the state and included scenarios of intra-extra-familial transmission in areas with low endemicity. Conclusions: A significantly active circulation of M. leprae was observed. Therefore, surveillance and control measures must be implemented.

15.
Rev. bras. epidemiol ; Rev. bras. epidemiol;26: e230034, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1449680

ABSTRACT

ABSTRACT Objective: Low birth weight (LBW) is a public health problem strongly associated with infant mortality. This study aimed to identify the spatial distribution of infant mortality in newborns with LBW (750-2,500 g) at term (≥37 weeks of gestation), due to their being small for gestational age, analyzing its association with mother-related determinants, as well as to identify priority areas of mortality in the State of São Paulo, 2010-2019. Methods: Infant mortality rate was analyzed in the division of neonatal mortality and postneonatal mortality of newborns with LBW at term. The empirical Bayesian method smoothed the rates, the univariate Moran index was used to measure the degree of spatial association between the municipalities, and the bivariate Moran index was employed to identify the existence of a spatial association between the rates and the selected determinants. Thematic maps of excess risk and local Moran were prepared to identify spatial clusters, adopting 5% as a significance level. Results: The excess risk map showed that more than 30% of the municipalities had rates above the state rate. High-risk clusters were identified in the southwest, southeast, and east regions, mainly among more developed municipalities. The determinants of adolescent mothers, mothers over 34 years of age, low education, human development index, social vulnerability index, gross domestic product, physicians, and pediatric beds showed a significant association with the rates evaluated. Conclusions: Priority areas and significant determinants associated with reduced mortality in newborns with LBW were identified, suggesting the need for intervention measures to achieve the Sustainable Development Goal.


RESUMO Objetivo: O baixo peso ao nascer (BPN) é um problema de saúde pública e está fortemente associado à mortalidade infantil. Este estudo teve como objetivo identificar a distribuição espacial da mortalidade infantil em recém-nascidos com BPN (750-2.500 g) a termo (≥37 semanas de gestação), por serem pequenos para a idade gestacional, analisando sua associação com determinantes relacionados à mãe, bem como identificar áreas prioritárias de mortalidade no Estado de São Paulo, 2010-2019. Métodos: A taxa de mortalidade infantil foi analisada na divisão da mortalidade neonatal e mortalidade pós-neonatal de recém-nascidos com BPN a termo. O método bayesiano empírico alisou as taxas, o índice de Moran univariado foi utilizado para medir o grau de associação espacial entre os municípios e o índice de Moran bivariado foi empregado para identificar a existência de associação espacial entre as taxas e os determinantes selecionados. Mapas temáticos de excesso de risco e Moran local foram elaborados para identificar aglomerados espaciais, adotando-se 5% como nível de significância. Resultados: O mapa de excesso de risco mostrou que mais de 30% dos municípios apresentaram taxas acima da taxa estadual. Aglomerados de alto risco foram identificados nas regiões sudoeste, sudeste e leste, principalmente entre os municípios mais desenvolvidos. Os determinantes mães adolescentes, mães acima de 34 anos, baixa escolaridade, índice de desenvolvimento humano, índice de vulnerabilidade social, produto interno bruto, médicos e leitos pediátricos apresentaram associação significativa com as taxas avaliadas. Conclusões: Foram identificadas áreas prioritárias e determinantes significativos associados à redução da mortalidade em recém-nascidos com BPN, sugerindo a necessidade de medidas de intervenção para atingir o Objetivo de Desenvolvimento Sustentável.

16.
Rev. saúde pública (Online) ; 57: 88, 2023. tab, graf
Article in English, Portuguese | LILACS | ID: biblio-1522870

ABSTRACT

ABSTRACT OBJECTIVE To describe the process and epidemiological implications of georeferencing in EpiFloripa Aging samples (2009-2019). METHOD The EpiFloripa Aging Cohort Study sought to investigate and monitor the living and health conditions of the older adult population (≥ 60) of Florianópolis in three study waves (2009/2010, 2013/2014, 2017/2019). With an automatic geocoding tool, the residential addresses were spatialized, allowing to investigate the effect of the georeferencing sample losses regarding 19 variables, evaluated in the three waves. The influence of different neighborhood definitions (census tracts, Euclidean buffers, and buffers across the street network) was examined in the results of seven variables: area, income, residential density, mixed land use, connectivity, health unit count, and public open space count. Pearson's correlation coefficients were calculated to evaluate the differences between neighborhood definitions according to three variables: contextual income, residential density, and land use diversity. RESULT The losses imposed by geocoding (6%, n = 240) caused no statistically significant difference between the total sample and the geocoded sample. The analysis of the study variables suggests that the geocoding process may have included a higher proportion of participants with better income, education, and living conditions. The correlation coefficients showed little correspondence between measures calculated by the three neighborhood definitions (r = 0.37-0.54). The statistical difference between the variables calculated by buffers and census tracts highlights limitations in their use in the description of geospatial attributes. CONCLUSION Despite the challenges related to geocoding, such as inconsistencies in addresses, adequate correction and verification mechanisms provided a high rate of assignment of geographic coordinates, the findings suggest that adopting buffers, favored by geocoding, represents a potential for spatial epidemiological analyses by improving the representation of environmental attributes and the understanding of health outcomes.


RESUMO OBJETIVO Descrever o processo e as implicações epidemiológicas do georreferenciamento nas amostras do EpiFloripa Idoso (2009-2019). MÉTODO O estudo de coorte EpiFloripa Idoso buscou investigar e acompanhar as condições de vida e saúde da população idosa (≥ 60) de Florianópolis em três ondas de estudo (2009/2010, 2013/2014, 2017/2019). Com uma ferramenta de geocodificação automática, os endereços residenciais foram espacializados, permitindo a investigação do efeito das perdas amostrais do georreferenciamento em relação a 19 variáveis, avaliadas nas três ondas. A influência de diferentes definições de vizinhança (setores censitários, buffers euclidianos e buffers pela rede de ruas) foi examinada nos resultados de sete variáveis: área, renda, densidade residencial, uso misto do solo, conectividade, contagem de unidades de saúde, e contagem de espaços livres públicos. Coeficientes de correlação de Pearson foram calculados para avaliar as diferenças entre as definições de vizinhança de acordo com três variáveis: renda contextual, densidade residencial e diversidade de uso do solo. RESULTADO As perdas impostas pela geocodificação (6%, n = 240) não ocasionaram diferença estatística significativa entre a amostra total e a georreferenciada. A análise das variáveis do estudo sugere que o processo de geocodificação pode ter incluído uma maior proporção de participantes com melhor nível de renda, escolaridade e condições de vida. Os coeficientes de correlação evidenciaram pouca correspondência entre medidas calculadas pelas três definições de vizinhança (r = 0,37-0,54). A diferença estatística entre as variáveis calculadas por buffers e setores censitários ressalta limitações no uso destes na descrição dos atributos geoespaciais. CONCLUSÃO Apesar dos desafios relacionados à geocodificação, como inconsistências nos endereços, adequados mecanismos de correção e verificação propiciaram elevada taxa de atribuição de coordenadas geográficas. Os achados sugerem que a adoção de buffers, favorecida pela geocodificação, representa uma potencialidade para análises epidemiológicas espaciais ao aprimorar a representação dos atributos do ambiente e a compreensão dos desfechos de saúde.


Subject(s)
Humans , Male , Female , Aged , Aged, 80 and over , Health of the Elderly , Health Surveys , Geographic Information Systems , Environment and Public Health , Geographic Mapping , Spatial Analysis , Cohort Studies
17.
Rev. Esc. Enferm. USP ; Rev. Esc. Enferm. USP;57: e20220321, 2023. graf
Article in English, Portuguese | LILACS, BDENF | ID: biblio-1521560

ABSTRACT

ABSTRACT Objective: To analyze the spatial pattern of human immunodeficiency virus infection in pregnant women and its correlation with socioeconomic determinants. Method: Ecological study, carried out with cases of human immunodeficiency virus infection in pregnant women in the state of Pará, Brazil, from 2010 to 2017. Rate analysis was performed using the empirical Bayesian method and univariate local Moran. Bivariate analyses were used to examine the correlation between infection and socioeconomic determinants. Results: High rates of infection were observed in municipalities in the mesoregions of Southeast of Pará and Metropolitan area of Belém. A significant spatial correlation was found between human immunodeficiency virus infection rates in pregnant women and human development index indicators (I = 0.2836; p < 0.05), average income (I = 0.6303; p < 0.05), and illiteracy rate (I = 0.4604; p < 0.05). Conclusion: The spatial pattern of human immunodeficiency virus infection in pregnant women correlated to socioeconomic determinants highlights the need to restructure public policies for the control and prevention of AIDS virus that take into account the socioeconomic factors of this specific population and locoregional disparities in Pará.


RESUMEN Objetivo: Analizar el estándar espacial de la infección por el virus de la inmunodeficiencia humana en mujeres embarazadas y su correlación con determinantes socioeconómicos. Método: Estudio ecológico, realizado con casos de infección por el virus de la inmunodeficiencia humana en mujeres embarazadas en el estado de Pará, Brasil, de 2010 a 2017. El análisis de tasas se realizó mediante el método bayesiano empírico y Moran local univariado. Se emplearon análisis bivariados para examinar la correlación entre la infección y los determinantes socioeconómicos. Resultados: Se observaron altas tasas de infección en municipios de las mesorregiones Sudeste de Pará y Metropolitana de Belém. Se identificó una correlación espacial significativa entre las tasas de infección por el virus de la inmunodeficiencia humana en mujeres embarazadas y los indicadores del índice de desarrollo humano (I = 0,2836; p < 0,05), ingreso medio (I = 0,6303; p < 0,05) y tasa de analfabetismo (I = 0,4604; p < 0,05). Conclusión: El estándar espacial de la infección por el virus de la inmunodeficiencia humana en mujeres embarazadas correlacionado con determinantes socioeconómicos refuerza la necesidad de reestructurar políticas públicas para el control y la prevención del virus del SIDA que tengan en cuenta los factores socioeconómicos de esta población específica y las disparidades locorregionales en Pará.


RESUMO Objetivo: Analisar o padrão espacial da infecção pelo vírus da imunodeficiência humana em gestantes e sua correlação com os determinantes socioeconômicos. Método: Estudo ecológico, realizado com casos de infecção pelo vírus da imunodeficiência humana em gestantes no estado do Pará, Brasil, de 2010 a 2017. A análise das taxas foi realizada por meio do método bayesiano empírico e Moran local univariado. As análises bivariadas foram empregadas para examinar a correlação entre a infecção e os determinantes socioeconômicos. Resultados: Verificaram-se altas taxas da infecção em municípios das mesorregiões Sudeste Paraense e Metropolitana de Belém. Identificou-se correlação espacial significativa entre as taxas de infecção pelo vírus da imunodeficiência humana em gestantes e os indicadores índice de desenvolvimento humano (I = 0,2836; p < 0,05), renda média (I = 0,6303; p < 0,05) e taxa de analfabetismo (I = 0,4604; p < 0,05). Conclusão: O padrão espacial da infecção pelo vírus da imunodeficiência humana em gestantes correlacionada aos determinantes socioeconômicos reforça a necessidade de reestruturação de políticas públicas de controle e prevenção do vírus da AIDS que atentem para os fatores socioeconômicos desse público específico e disparidades locorregionais no Pará.


Subject(s)
Humans , Pregnancy , HIV Infections , Pregnant Women , Geographic Information Systems , Health Status Disparities , Spatial Analysis
18.
Rev. crim ; 65(1): 11-25, 2023. tab
Article in Spanish | LILACS | ID: biblio-1427612

ABSTRACT

En la sociedad de hoy los delitos vienen incrementándose y particularmente en la ciudad de Bogotá, lo que ha causado muchos inconvenientes a la Policía Nacional de Colombia, así como también a los centros de seguridad ciudadana. Ante esta situación, se ha propuesto una predicción de tiempo-espacio en los puntos críticos de crímenes y delitos, con la ayuda de inteligencia artificial. Por consiguiente, este trabajo tiene como objetivo analizar, resumir, interpretar y evaluar las distintas técnicas de predicción espacio-temporal de la delincuencia con un panorama inteligente. Por la propia naturaleza de la investigación, se utilizó una metodología de enfoque descriptivo-cualitativo, con la cual se diseñaron fichas de observación estructurada para sistematizar información de cinco bases de datos: Scopus, Web of Science, IEEE, ACM, Springer; dichas publicaciones comprenden desde 2019 hasta junio de 2021. En consecuencia, se encontraron en total 3015 estudios, después del proceso de cribado y verificación de los criterios de exclusión e inclusión, se seleccionaron 132 artículos, luego se aplicaron preguntas Psicólogo Interno Residente (PIR), quedando así 18 artículos. Los principales hallazgos encontrados indican que los algoritmos de redes neuronales resultaron ser uno de los métodos más eficaces para la detección de puntos críticos de delincuencia, dado que los grandes avances de la tecnología coadyuvarían en los próximos años a predecir de forma rápida y eficaz los actos delictivos y los crímenes ubicados en cualquier región del continente latinoamericano.


In today's society, crimes are increasing, particularly in the city of Bogota, which has caused many inconveniences to the National Police of Colombia, as well as to the citizen security centers. Given this situation, a time-space prediction of crime and crime hotspots has been proposed with the help of artificial intelligence. Therefore, this paper aims to analyze, summarize, interpret and evaluate the various techniques of space-time prediction of crime with an intelligent view. Due to the very nature of the research, a descriptive-qualitative approach methodology was used, with which structured observation sheets were designed to systematize information from five da-tabases: Scopus, Web of Science, IEEE, ACM, Springer; these publications span from 2019 to June 2021. Consequently, a total of 3015 studies were found, after the screening process and verification of exclusion and inclusion criteria, 132 articles were selected, then questions were applied Psychologist Internal Resident (PIR), thus leaving 18 articles. The main findings indicate that neural network algorithms proved to be one of the most effective methods for the detection of crime hotspots, given that the great advances in technology would help in the coming years to quickly and effectively predict criminal acts and crimes located in any region of the Latin American continent.


Na sociedade de hoje, a criminalidade está aumentando, particularmente na cidade de Bogotá, o que tem causado muitos inconvenientes para a Polícia Nacional Colombiana, bem como para os centros de segurança do cidadão. Diante desta situação, foi proposta uma previsão tempo-espacial de hotspots de crime com a ajuda da inteligência artificial. Portanto, este documento visa analisar, resumir, interpretar e avaliar as diversas técnicas de previsão espaço-temporal do crime com uma visão inteligente. Devido à própria natureza da pesquisa, foi utilizada uma metodologia de abordagem descritiva-qualitativa, com a qual foram elaboradas fichas de observação estrutura-das para sistematizar informações de cinco bancos de dados: Scopus, Web of Science, IEEE, ACM, Springer; estas publicações abrangem o período de 2019 a junho de 2021. Consequentemente, foi encontrado um total de 3015 estudos, após o processo de triagem e verificação dos critérios de exclusão e inclusão, 132 artigos foram selecionados, depois foram aplicadas perguntas ao Psicólogo em Residência (PIR), deixando 18 artigos. As principais descobertas indicam que os algoritmos de redes neurais provaram ser um dos métodos mais eficazes para a detecção de hotspots de crime, dado que os grandes avanços na tecnologia ajudarão nos próximos anos a prever rápida e efetivamente atos criminosos e crimes localizados em qualquer região do continente latino-americano.


Subject(s)
Humans , Artificial Intelligence , Crime , Criminal Behavior , Safety , Algorithms , Police , Colombia
19.
Article | IMSEAR | ID: sea-219103

ABSTRACT

Geographic Information System (GIS) is usually carried out to catch, investigate, control, and store to give any kind of geological information. The blend of planning, information base innovation, and factual examination is all that all GIS implies and that is the purpose for its utilization in structural designing. In the development business, it is utilized in the underlying stage (preliminary stage), during spatial situating that will be settled cautiously with checking GIS innovation generally utilized attributable to its potential for offering extraordinary or new ways for settling the issue identified with ecological which bring about the diminishing expense, quality improvement for projects. GIS programming resembles a multitasker that permits so numerous information plans utilized in development improvement permitting structural architects to give out information to numerous organizations in the necessary arrangement while keeping up with information unwavering quality GIS permits to reuse, oversee, share, examine information easily in this manner overseeing time and assets.

20.
Rev. biol. trop ; Rev. biol. trop;70(1)dic. 2022.
Article in English | LILACS, SaludCR | ID: biblio-1423035

ABSTRACT

Introduction: The prediction of potential fishing areas is considered one of the most immediate and practical approaches in fisheries and is an essential technique for decision-making in managing fishery resources. It helps fishermen reduce their fuel costs and the uncertainty of their fish catches; this technique allows to contribute to national and international food security. In this study, we build different combinations of predictive statistical models such as Generalized Linear Models and Generalized Additive Models. Objective: To predict the spatial distribution of PFZs of the dolphinfish (Coryphaena hippurus L.) in the Colombian Pacific Ocean. Methods: We built different combinations of Generalized Linear Models and Generalized Additive Models to predict the Catch Per Unit Effort of C. hippurus captured from 2002 to 2015 as a function of sea surface temperature, chlorophyll-a concentration, sea level anomaly, and bathymetry. Results: A Generalized Additive Model with Gaussian error distribution obtained the best performance for predicting PFZs for C. hipurus. Model validation was performed by calculating the Root Mean Square Error through a cross-validation approach. The R2 of this model was 50 %, which was considered suitable for the type of data used. January and March were the months with the highest Catch per Unit Effort values, while November and December showed the lower values. Conclusion: The predicted PFZs of C. hippurus with Generalized Additive Models satisfactorily with the results of previous research, suggesting that our model can be explored as a tool for the assessment, decision making, and sustainable use of this species in the Colombian Pacific Ocean.


Introducción: La predicción de zonas potenciales de pesca se considera uno de los enfoques más inmediatos y efectivos en las pesquerías, es una técnica importante para la toma de decisiones en el manejo de los recursos pesqueros. Ayuda a los pescadores a reducir su costo de combustible y también a disminuir la incertidumbre de sus capturas, esta técnica permite contribuir a la seguridad alimentaria nacional e internacional. En este estudio, se construyeron diferentes combinaciones de modelos estadísticos predictivos como modelos lineales generalizados y modelos aditivos generalizados. Objetivo: predecir la distribución espacial de las zonas potenciales de pesca del pez dorado (Coryphaena hippurus L.) en el Pacífico colombiano. Métodos: La variable de respuesta se expresó en escala de captura por unidad de esfuerzo, es decir, el número de individuos de C. hippurus capturados por un número total de anzuelos disponibles entre 2002 y 2015. Temperatura de la superficie del mar, concentración de clorofila, anomalía del nivel del mar y batimetría, se utilizaron como variables explicativas para los meses de estacionalidad de C. hippurus (noviembre - marzo). Resultados: El modelo con mejor rendimiento para la predicción de zonas potenciales de pesca fue un modelo aditivo generalizado con distribución de error gaussiana y función de enlace de registro, que se seleccionó en función del criterio de información de Akaike, el R2 y la desviación explicada. La validación del modelo se realizó calculando el error cuadrático medio a través de un enfoque de validación cruzada. El ajuste de este modelo fue del 50 %, lo que puede considerarse adecuado para el tipo de datos utilizados. Enero y marzo fueron los meses con mayor captura por unidad de esfuerzo y noviembre-diciembre los meses con menor. Conclusión: Las zonas potenciales de pesca previstas coincidieron satisfactoriamente con investigaciones anteriores, lo que sugiere que nuestro modelo es una herramienta poderosa para la evaluación, toma de decisiones y uso sostenible de los recursos pesqueros de C. hippurus en el Pacífico colombiano.


Subject(s)
Animals , Fishing Industry , Forecasting , Colombia , Geographic Information Systems
SELECTION OF CITATIONS
SEARCH DETAIL