Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Year range
1.
Protein & Cell ; (12): 21-35, 2024.
Article in English | WPRIM | ID: wpr-1010788

ABSTRACT

The seat of human intelligence is the human cerebral cortex, which is responsible for our exceptional cognitive abilities. Identifying principles that lead to the development of the large-sized human cerebral cortex will shed light on what makes the human brain and species so special. The remarkable increase in the number of human cortical pyramidal neurons and the size of the human cerebral cortex is mainly because human cortical radial glial cells, primary neural stem cells in the cortex, generate cortical pyramidal neurons for more than 130 days, whereas the same process takes only about 7 days in mice. The molecular mechanisms underlying this difference are largely unknown. Here, we found that bone morphogenic protein 7 (BMP7) is expressed by increasing the number of cortical radial glial cells during mammalian evolution (mouse, ferret, monkey, and human). BMP7 expression in cortical radial glial cells promotes neurogenesis, inhibits gliogenesis, and thereby increases the length of the neurogenic period, whereas Sonic Hedgehog (SHH) signaling promotes cortical gliogenesis. We demonstrate that BMP7 signaling and SHH signaling mutually inhibit each other through regulation of GLI3 repressor formation. We propose that BMP7 drives the evolutionary expansion of the mammalian cortex by increasing the length of the neurogenic period.


Subject(s)
Animals , Mice , Humans , Ependymoglial Cells/metabolism , Hedgehog Proteins/metabolism , Ferrets/metabolism , Cerebral Cortex , Neurogenesis , Mammals/metabolism , Neuroglia/metabolism , Bone Morphogenetic Protein 7/metabolism
2.
Experimental Neurobiology ; : 103-112, 2016.
Article in English | WPRIM | ID: wpr-213647

ABSTRACT

The subgranular zone (SGZ) and subventricular zone (SVZ) are developmental remnants of the germinal regions of the brain, hence they retain the ability to generate neuronal progenitor cells in adult life. Neurogenesis in adult brain has an adaptive function because newly produced neurons can integrate into and modify existing neuronal circuits. In contrast to the SGZ and SVZ, other brain regions have a lower capacity to produce new neurons, and this usually occurs via parenchymal and periventricular cell genesis. Compared to neurogenesis, gliogenesis occurs more prevalently in the adult mammalian brain. Under certain circumstances, interaction occurs between neurogenesis and gliogenesis, facilitating glial cells to transform into neuronal lineage. Therefore, modulating the balance between neurogenesis and gliogenesis may present a new perspective for neurorestoration, especially in diseases associated with altered neurogenesis and/or gliogenesis, cell loss, or disturbed homeostasis of cellular constitution. The present review discusses important neuroanatomical features of adult neurogenesis and gliogenesis, aiming to explore how these processes could be modulated toward functional repair of the adult brain.


Subject(s)
Adult , Humans , Aging , Brain , Constitution and Bylaws , Homeostasis , Lateral Ventricles , Neurogenesis , Neuroglia , Neurons , Stem Cells
3.
Clinical Psychopharmacology and Neuroscience ; : 338-344, 2016.
Article in English | WPRIM | ID: wpr-210159

ABSTRACT

OBJECTIVE: We reported that postnatal exposure of rats to valproic acid (VPA) stimulated proliferation of glial precursors during cortical gliogenesis. However, there are no reports whether enhanced postnatal gliogenesis affects behaviors related to neuropsychiatric disorders. METHODS: After VPA treatment during the postnatal day (PND) 2 to PND 4, four behavioral test, such as open field locomotor test, elevated plus maze test, three-chamber social interaction test, and passive avoidance test, were performed at PND 21 or 22. RESULTS: VPA treated rats showed significant hyperactive behavior in the open field locomotor test (p<0.05). Moreover, the velocity of movement in the VPA group was increased by 69.5% (p<0.01). In the elevated plus maze test, VPA exposed rats expressed significantly lower percentage of time spent on and of entries into open arms more than the control group (p<0.05). Also, both sociability and social preference indices with strangers in the three-chamber social interaction test were significantly lower in the VPA exposed rats (p<0.05). CONCLUSION: Our results suggest that altered glial cell development is another locus at which pathogenetic factors can operate to contribute to the neurodevelopmental disorder.


Subject(s)
Animals , Rats , Anxiety , Arm , Autistic Disorder , Behavior Rating Scale , Interpersonal Relations , Neurodevelopmental Disorders , Neuroglia , Social Behavior , Valproic Acid
4.
Experimental Neurobiology ; : 177-185, 2015.
Article in English | WPRIM | ID: wpr-216091

ABSTRACT

mTOR is a serine/threonine kinase composed of multiple protein components. Intracellular signaling of mTOR complexes is involved in many of physiological functions including cell survival, proliferation and differentiation through the regulation of protein synthesis in multiple cell types. During brain development, mTOR-mediated signaling pathway plays a crucial role in the process of neuronal and glial differentiation and the maintenance of the stemness of neural stem cells. The abnormalities in the activity of mTOR and its downstream signaling molecules in neural stem cells result in severe defects of brain developmental processes causing a significant number of brain disorders, such as pediatric brain tumors, autism, seizure, learning disability and mental retardation. Understanding the implication of mTOR activity in neural stem cells would be able to provide an important clue in the development of future brain developmental disorder therapies.


Subject(s)
Autistic Disorder , Brain Diseases , Brain Neoplasms , Brain , Cell Survival , Intellectual Disability , Learning Disabilities , Neural Stem Cells , Neurogenesis , Neurons , Phosphotransferases , Seizures
5.
The Korean Journal of Physiology and Pharmacology ; : 251-256, 2009.
Article in English | WPRIM | ID: wpr-727527

ABSTRACT

Previous observations suggest that Bis, a Bcl-2-binding protein, may play a role the neuronal and glial differentiation in vivo. To examine this further, we investigated Bis expression during the in vitro differentiation of P19 embryonic carcinoma cells induced by retinoic acid (RA). Western blotting and RT-PCR assays showed that Bis expression was temporarily decreased during the free floating stage and then began to increase on day 6 after the induction of differentiation. Double immunostaining indicated that Bis-expressing cells do not express several markers of differentiation, including NeuN, MAP-2 and Tuj-1. However, some of the Bis-expressing cells also were stained with GFAP-antibodies, indicating that Bis is involved glial differentiation. Using an shRNA strategy, we developed bis-knock down P19 cells and compared them with control P19 cells for the expression of NeuroD, Mash-1 and GFAP during RA-induced differentiation. Among these, only GFAP induction was significantly attenuated in P19-dnbis cells and the population showing GFAP immunoreactivity was also decreased. It is noteworthy that distribution of mature neurons and migrating neurons was disorganized, and the close association of migrating neuroblasts with astrocytes was not observed in P19-dnbis cells. These results suggest that Bis is involved in the migration-inducing activity of glial cells.


Subject(s)
Astrocytes , Blotting, Western , Neuroglia , Neurons , RNA, Small Interfering , Tretinoin
6.
Journal of Korean Neurosurgical Society ; : 302-308, 2004.
Article in Korean | WPRIM | ID: wpr-13422

ABSTRACT

OBJECTIVE: Recent advances in stem cell biology make it possible to induce the regeneration of injured axons and to replace lost cells in the injured spinal cord. It has been found that stem cells in human cord blood differentiate into mature neurons and glial cells both in vitro and in vivo. These findings suggest that human umbilical cord blood cells(HUCBs) can be used as therapeutic donor cells in cases of spinal cord injury. METHODS: To attempt the repair an injured cord following spinal cord injury(SCI), we transplanted HUCBs into contused spinal cords. This was found to promote a long-term improvement in neurologic function relative to a lesion-control group. HUCBs were cultured in vitro for 7 days. Bromodeoxyuridine(BrdU) was added to the media to allow the BrdU to integrate into dividing cells. Cultured HUCBs(2x106 cells) were then injected into the injury epicenter 7 days after SCI. The Basso-Beattie-Bresnahan(BBB) locomotor rating system was used to score functional improvement in HUCBs transplanted rats. Immunohistochemical staining for neurofilament, macrotubule associated protein 2(MAP-2), glial fibrillary acidic protein(GFAP), and nestin was performed. RESULTS: Immunohistochemical analysis 5 weeks after SCI showed that gliogenesis of the transplanted donor HUCBs had occurred within the adult rat spinal cord. These donor-derived astrocyte-like cells extended their processes into the host tissues and integrated well. HUCBs derived neurons(neurofilament, MAP-2) and nestin expressing cells were also detected. Behavior analysis using BBB rating scores showed that functional improvement was greater in transplanted rats than in non-treated rats. CONCLUSION: HUCBs are one of the potential sources for transplantation material for the treatment of SCI.


Subject(s)
Adult , Animals , Humans , Rats , Axons , Biology , Bromodeoxyuridine , Fetal Blood , Nestin , Neuroglia , Neurons , Regeneration , Spinal Cord Injuries , Spinal Cord , Stem Cells , Tissue Donors , Transplantation , Umbilical Cord
SELECTION OF CITATIONS
SEARCH DETAIL