Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Article | IMSEAR | ID: sea-201454

ABSTRACT

Background: Aflatoxin contamination in groundnuts is caused by the fungi Aspergillus flavus and Aspergillus parasiticus. In this study, the prevalence of aflatoxin B1 in groundnuts has been assessed. Aflatoxins are highly carcinogenic, mutagenic and teratogenic. They are known to cause hepatocellular toxicity. The aim of the study is to estimate prevalence of aflatoxin contamination in groundnuts sold in the city of Pune and to assess the awareness about aflatoxin contamination amongst shopkeepers of selected shops/vendors.Methods: Sampling of groundnuts was conducted in 17 out of 144 administrative wards of Pune city. Hundred samples weighing 250g each were purchased from the randomly selected stores and transported in black polythene bags to The State Public Health Laboratory, Pune. Thin layer chromatography (TLC) was used by the laboratory to determine levels of aflatoxin B1. A pre-structured questionnaire was used for assessment of knowledge of aflatoxin contamination amongst vendors.Results: Out of 100 samples, four samples were contaminated with aflatoxin. However the maximum contamination was 0.6 parts per billion, which is well within the permissible limit of 30 parts per billion. Awareness of aflatoxin contamination amongst vendors was six percent. Ninety four percent of vendors were unaware of the concept of aflatoxin contamination.Conclusions: It is necessary to educate vendors, suppliers and handlers about the health hazards caused by this toxic fungus for the benefit of the average consumer.

2.
Malaysian Journal of Microbiology ; : 471-479, 2019.
Article in English | WPRIM | ID: wpr-780946

ABSTRACT

Aims@#Groundnut is an important food crop and is susceptible to contamination by Aspergillus. The present study was conducted to identify Aspergillus spp. from groundnuts as well as to detect mycotoxin production by toxigenic species. @*Methodology and results@#Molecular identification using ITS region, β-tubulin and calmodulin genes identified six species, A. niger, A. tubingensis, A. flavus, A. aculeatus, A. sydowii and A. fumigatus. Phylogenetic tree of combined sequences showed the isolates from the same species were grouped with reference strains in the same clade, thus the species identity was confirmed. Detection of mycotoxin biosynthesis genes can give an indication of mycotoxin production. Two ochratoxin A genes, PKS15KS and PKS15C-MeT were detected in seven A. niger isolates but none of the isolates produced ochratoxin A when quantification was conducted using Ultra-High Performance Liquid Chromatography. Two aflatoxin B1 biosynthesis genes, Nor-1 (norsolorinic acid) and Ver-1 (Versicolorin) genes were detected in A. flavus but only KDH7 and KL27b isolates produced aflatoxin B1 with concentrations of 1.0 μg/g and 1.1 μg/g, respectively. @*Conclusion, significance and impact of study@#Various species of Aspergillus found on groundnuts may lead to potential mycotoxin contamination as toxigenic species were also recovered. The occurrence of Aspergillus spp. can reduce the quality of the legumes as well as reducing their shelf life.

3.
Indian J Exp Biol ; 2015 Mar; 53(3): 143-151
Article in English | IMSEAR | ID: sea-158399

ABSTRACT

In animals, long-term feeding with peanut (Arachis hypogaea) seed coats causes hypertrophy and hyperplasia of the thyroid gland. However, to date there have been no detailed studies. Here, we explored the thyroidal effects of dietary peanut seed coats (PSC) in rats. The PSC has high levels of pro-goitrogenic substances including phenolic and other cyanogenic constituents. The PSC was mixed with a standard diet and fed to rats for 30 and 60 days, respectively. Animals fed with the PSC-supplemented diet showed a significant increase in urinary excretion of thiocyanate and iodine, thyroid enlargement, and hypertrophy and/or hyperplasia of thyroid follicles. In addition, there was inhibition of thyroid peroxidase (TPO) activity, 5’-deiodinase-I (DIO1) activity, and (Na+-K+)-ATPase activity in the experimental groups of rats as compared to controls. Furthermore, the PSC fed animals exhibited decreased serum circulating total T4 and T3 levels, severe in the group treated for longer duration. These data indicate that PSC could be a novel disruptor of thyroid function, due to synergistic actions of phenolic as well as cyanogenic constituents.


Subject(s)
Animal Feed/adverse effects , Animals , Antithyroid Agents/isolation & purification , Antithyroid Agents/toxicity , Arachis/chemistry , Drug Synergism , Glucosides/analysis , Glucosides/pharmacology , Glucosides/toxicity , Hyperplasia , Hypertrophy , Hyperthyroidism/blood , Hyperthyroidism/chemically induced , Iodide Peroxidase/antagonists & inhibitors , Iodine/urine , Male , Nitriles/analysis , Nitriles/pharmacology , Nitriles/toxicity , Ovule/chemistry , Polyphenols/analysis , Polyphenols/pharmacology , Polyphenols/toxicity , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Thiocyanates/urine , Thyroid Gland/drug effects , Thyroid Gland/enzymology , Thyroid Gland/pathology , Thyroid Hormones/blood
4.
Br Biotechnol J ; 2015 7(3): 122-133
Article in English | IMSEAR | ID: sea-174736

ABSTRACT

Aims: A procedure was developed for embryogenesis from embryo explants derived from mature seeds of freshly harvested Serenut 4T, Serenut 1R and Acholi-white groundnut cultivars representing the three broad groundnut botanical classifications. Methodology: This study explored the use of mature embryo axes as explants for somatic embryogenesis, and determined the factors that affect regeneration of three Ugandan groundnut cultivars. Freshly harvested mature seeds of the three groundnut cultivars were collected and the embryo explants were initiated on 3 media namely; Murashige and Skoog (MS) basal media with varying concentrations of the growth regulator 2,4-Dichlorophenoxy acetic acid (2,4-D); Chu N6 basal medium with vitamins (N6); and Callus Induction Medium (CIM). The shoot formation and elongation medium contained MS basal medium supplemented with indolebutyric acid (IBA) and 6- Benzylamminopurine (BAP) in isolation, and BAP in combination with a-naphthaleneacetic acid (NAA) and indoleacetic acid (IAA). For root induction, elongated shoots were transferred to MS medium supplemented with various combinations of NAA with IBA, BAP and a combination of IBA and Kinetin. Results and Conclusion: Different concentrations of 2,4-D elicited different callogenesis responses in the cultivars with Acholi white (Valencia botanical) and Serenut 4T (Spanish botanical) giving the optimal response at 5mg/l whereas Serenut 1R (Virginia botanical) showed best response at a concentration of 30 mg/l. N6 and CIM supported callogenesis in Acholi white (AW) and Serenut 4T only. In all cultivars, maximum root production was gained when using MS medium supplemented with NAA- 1 mg/l and IBA -2.0 mg/l. On the other hand, for Serenut 1R and Serenut 4T, BAP 2.5 mg/l; NAA 0.5 mg/l combination yielded higher shoot regeneration percentage whereas for AW BAP 3 mg/l; NAA 0.5 mg/l supported maximum shoot production.This is the first ever report of successful regeneration of the three groundnuts botanicals in Uganda. These results are likely to facilitate genetic transformation of three preferred Ugandan groundnut varieties.

SELECTION OF CITATIONS
SEARCH DETAIL