Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
China Journal of Chinese Materia Medica ; (24): 5172-5180, 2023.
Article in Chinese | WPRIM | ID: wpr-1008715

ABSTRACT

Excessive application of chemical fertilizer has caused many problems in Angelica dahurica var. formosana planting, such as yield decline and quality degradation. In order to promote the green cultivation mode of A. dahurica var. formosana and explore rhizosphere fungus resources, the rhizosphere fungi with nitrogen fixation, phosphorus solubilization, potassium solubilization, iron-producing carrier, and IAA-producing properties were isolated and screened in the rhizosphere of A. dahurica var. formosana from the genuine and non-genuine areas, respectively. The strains were identified comprehensively in light of the morphological characteristics and ITS rDNA sequences, and the growth-promoting effect of the screened strains was verified by pot experiment. The results showed that 37 strains of growth-promoting fungi were isolated and screened from the rhizosphere of A. dahurica var. formosana, mostly belonging to Fusarium. The cultured rhizosphere growth-promoting fungi of A. dahurica var. formosana were more abundant and diverse in the genuine producing areas than in the non-genuine producing areas. Among all strains, Aspergillus niger ZJ-17 had the strongest growth promotion potential. Under the condition of no fertilization outdoors, ZJ-17 inoculation significantly promoted the growth, yield, and accumulation of effective components of A. dahurica var. formosana planted in the soil of genuine and non-genuine producing areas, with yield increases of 73.59% and 37.84%, respectively. To a certain extent, it alleviated the restriction without additional fertilization on the growth of A. dahurica var. formosana. Therefore, A. niger ZJ-17 has great application prospects in increasing yield and quality of A. dahurica var. formosana and reducing fertilizer application and can be actually applied in promoting the growth of A. dahurica var. formosana and producing biofertilizer.


Subject(s)
Fertilizers , Rhizosphere , Angelica/chemistry , Fungi/genetics , Phosphorus
2.
Bol. latinoam. Caribe plantas med. aromát ; 21(5): 607-619, sept. 2022. ilus
Article in English | LILACS | ID: biblio-1553743

ABSTRACT

Aloe vera is among the world's economically most important medicinal plants, but as the growth of this plant and, consequently, the accumulation of metabolites is slow, we tested the hypothesis that root endophytic bacteria isolated from A. vera plants can promote growth and increase the accumulation of aloin in the gel and latex. For this, we inoculate seedlings with four endophytic bacteria and a combination of them. We confirmed the hypothesis and identified two strains with potential for the formulation of inoculants to improve the cultivation of A. vera. The bacterium 149H Paraburkholderiasp. increases the number of leaves and the accumulation of biomass, but on the other hand, 35V Enterobacter ludwigii inoculation increased the content of aloin in the gel and in the latex. Further research should focus on the association of these two strains in a single inoculant, to both promote growth and increase the synthesis of metabolites.


Aloe vera se encuentra entre las plantas medicinales económicamente más importantes del mundo, pero como el crecimiento de esta planta y, en consecuencia, la acumulación de metabolitos es lento, probamos la hipótesis de que las bacterias endofíticas de raíces aisladas de las plantas de A. vera pueden promover el crecimiento y aumentar la acumulación de aloína en el gel y látex. Para ello, inoculamos plántulas con cuatro bacterias endofíticas y una combinación de ellas. Confirmamos la hipótesis e identificamos dos cepas con potencial para la formulación de inoculantes para mejorar el cultivo de A. vera. La bacteria 149H Paraburkholderia sp. aumenta el número de hojas y la acumulación de biomasa, pero, por otro lado, la inoculación con Enterobacter ludwigii 35V aumentó el contenido de aloína en el gel y en el látex. La investigación adicional debe centrarse en la asociación de estas dos cepas en un solo inoculante, tanto para promover el crecimiento como para aumentar la síntesis de metabolitos


Subject(s)
Aloe/growth & development , Endophytes/growth & development , Plants, Medicinal/growth & development , Aloe/parasitology
3.
Indian J Biochem Biophys ; 2022 Mar; 59(3): 331-342
Article | IMSEAR | ID: sea-221504

ABSTRACT

Endophytic microflora is source of several bioactive compounds. Endophytes isolated from Coleus species are yet to be fully explored for their bioactive potential. In this study, bacterial endophytes were isolated from three different species of Coleus. Isolated endophytes were characterized by using Gram staining and by sequencing 16S rRNA region. Further, solvents with different polarities were used to prepare extracts which were used for assessment of different bio-activities including in vitro cytotoxicity, anti-microbial and anti-oxidant activities. Also, the pure endophytic bacterial cultures were evaluated for their antiphytopathogen potential as well as indole-3-acetic acid (IAA) and protease production. Advanced studies on the endophytes with promising activities may lead to the isolation of novel natural products for drugs as well as in industrial and agricultural applications.

4.
Malaysian Journal of Microbiology ; : 471-481, 2021.
Article in English | WPRIM | ID: wpr-973838

ABSTRACT

Aims@#Plant growth promoting rhizobacteria (PGPR) is a group of bacteria that colonise plant roots and enhance plant growth by a diverse range of mechanisms. This study aims to determine the capabilities of PGPR isolated from cocoa tree roots and their efficiency in enhancing plant growth under greenhouse conditions.@*Methodology and results@#Eight samples of healthy cocoa tree roots were collected from different locations in Malaysia. Isolated bacteria were screened based on nitrogen fixation, phosphate and potassium solubilization, and catalase activity. The efficiency of purified PGPR was evaluated from pot experiments of cocoa seedlings under greenhouse conditions. Out of 122 isolates, 18 isolates showed several traits of nitrogen fixation, phosphorus and potassium solubilization and were further screened for other plant growth promoting (PGP) traits like catalase and production of indole acetic acid (IAA). Out of all the PGP trait tests, seven isolates showed the most prominent results for in vitro tests and were further tested in vivo for growth promotion of cocoa seedlings under greenhouse conditions. In the presence of bacterial isolates with 2.5 g of inorganic fertilizer, Leclercia adecarboxylata resulted in increases in plant height, leaf number, root length, stem fresh weight and total fresh and dry weight of cocoa seedlings by 15.68%, 17.14%, 9.48%, 5.67%, 11.84% and 25.12%, respectively.@*Conclusion, significance and impact of study@#Based on the result, L. adecarboxylata incorporated with selected carrier material improve cocoa seedling growth and biomass. This formulation also reduces the production cost of inorganic fertilizer and increase the application and development of biofertilizer.


Subject(s)
Rhizosphere
5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 217-226, 2020.
Article in Chinese | WPRIM | ID: wpr-873370

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) can establish mycorrhizal symbiosis system with most terrestrial plants,and play important roles in their growth and development. However,there is no systematic analysis and summarization of their roles in the growth, biosynthesis and accumulation of active substances of herbs,as well as stress-resistance mechanism. First,the main research methods of AMF were summarized in the paper,including the separation of AMF spores,morphological identification,chemical staining and molecular identification. The main morphological structures of some AMF were detailed in the table. In terms of growth promotion,AMF promoted the growth by prolonging mycelium,enhancing phosphatase secretion,organic acid,activation of soil and increasing absorption efficiency. In the aspect of biosynthesis and accumulation of flavonoids,terpenoids and other active substances in herbs,AMF improved the contents by regulating activities of signal substances and key enzymes involved in the metabolism of secondary products. In addition,AMF could alleviate a series of stresses caused by drought,heavy metal,high salt,high or low temperature by improving the activity of antioxidant enzymes,enhancing the ability of plants to scavenge free radicals,complexing toxic heavy metals,diluting high salt concentration,or inducing the expressions of key genes. Finally,the application prospects and in-depth study of AMF in the ecological planting of herbs were discussed, in order to provide reference for promoting relevant research.

6.
Braz. arch. biol. technol ; 63: e20190463, 2020. tab
Article in English | LILACS | ID: biblio-1132210

ABSTRACT

Abstract The objective of this research was to identify the best microorganisms, alone or in mixture for total biomass gain (root + shoot), positive change in gas exchange, nutrient uptake (root, shoot and grain) and yield and yield components in the soybean crop. Trial under greenhouse conditions had the experimental design in a completely randomized scheme with 26 treatments and four replicates. The treatments consisted of the rhizobacteria BRM 32109, BRM 32110 and 1301 (Bacillus sp.), BRM 32111 and BRM 32112 (Pseudomonas sp.), BRM 32113 (Burkholderia sp.), BRM 32114 (Serratia sp.), Ab-V5 (Azospirillum brasilense) and 1381 (Azospirillum sp.), and the fungus Trichoderma asperellum (a mix of the isolates UFRA.T06, UFRA.T09, UFRA.T12 and UFRA.T52). Besides, the same isolates were combined in pairs, completing 16 combinations. Control treatments received no microorganism. Microorganisms applied isolated or in combination, provided biomass gain, positive gas exchange, increases in nutrients uptake at the shoot and grain, and improved grain yield and its components than control plants. Stood out the combination Ab-V5 + T. asperellum pool, which provided a 25% improvement in grain yield.


Subject(s)
Seeds/growth & development , Glycine max/growth & development , Glycine max/microbiology , Biomass
7.
Ciênc. rural (Online) ; 50(3): e20190649, 2020. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1089557

ABSTRACT

ABSTRACT: Monochasma savatieri Franch. ex Maxim is a perennial, parasitic herb used in traditional Chinese medicine and its wild resources have decreased sharply in recent years due to destructively harvesting and habitat destruction. Haustorium formation is a key event of parasites, but the concentrations of haustorium-inducing factors vary with species and cultivation conditions. In this study, we investigated the effects of the 2,6-dimethoxy-p-benzoquinone (DMBQ) concentration and cultivation density on the growth traits, haustorium formation and biomass of M. savatieri in the absence of a host plant. The results showed that both the DMBQ concentration and cultivation density regulated growth traits, haustorium formation and biomass in M. savatieri. The number of haustoria was significantly positively correlated with seedling height, maximum root length, the number of root tips and total dry weight. Membership function analysis revealed an overall greater increase in growth traits, haustorium formation and biomass when M. savatieri was treated with 10 μmol·L-1DMBQ and grew solitarily. These results offer an understanding of growth in M. savatieri influenced by the DMBQ concentration and cultivation density, which may aid in the establishment of a comprehensive cultivation system for M. savatieri or similar plants.


RESUMO: Monochasma savatieri Franch. O ex Maxim é uma erva parasitária aperene usada na medicina tradicional chinesa suas fontes diminuíram acentuadamente nos últimos anos devido à colheita destrutiva e à destruição de habitats e condições de sobrevivência no campo. Neste estudo, investigamos os efeitos da concentração de 2,6-dimetoxi-p-benzoquinona (DMBQ) e densidade de cultivo sobre as características de crescimento, formação de haustório e biomassa de M. savatieri na ausência de uma planta hospedeira. Os resultados mostraram que a concentração de DMBQ e a densidade de cultivo regularam as características de crescimento, a formação de haustório e a biomassa em M. savatieri. O número de haustórios foi significativamente correlacionado positivamente com a altura das plântulas, comprimento máximo das raízes, número de pontas das raízes e peso seco total. Revelou também um aumento geral nas características de crescimento, formação de haustório e biomassa quando M. savatieri foi tratado com 10 μmol • L-1DMBQ e cresceu solitariamente. Esses resultados oferecem uma compreensão do crescimento de M. savatieri influenciado pela concentração de DMBQ e densidade de cultivo, o que pode ajudar no estabelecimento de um sistema abrangente de cultivo para plantas similares de M. savatierior.

8.
Acta amaz ; 49(4): 257-267, out. - dez. 2019.
Article in English | LILACS | ID: biblio-1118924

ABSTRACT

Brazil nut is a very important nontimber forest product in the Amazon region. Propagation of this tree still represents a challenge due to slow and uneven seed germination. In this context, plant growth-promoting bacteria can facilitate the process of propagation. The aims of this study were to isolate and characterize endophytic bacteria from the roots of Brazil nut trees in native terra firme forest and cultivation areas in northern Brazil, and to identify mechanisms by which bacteria act in plant growth promotion. Overall, 90 bacterial isolates were obtained from the roots of Brazil nut trees in monoculture, agroforestry and native forest areas by using different semisolid media. The isolates were characterized by sequencing the 16S rRNA gene. Plant growth-promoting characteristics were evaluated by the presence of the nifH gene, aluminum phosphate solubilization and the production of indole compounds. The isolates were affiliated with 18 genera belonging to 5 different classes (α-Proteobacteria, ß-Proteobacteria, γ-Proteobacteria, Bacilli and Actinobacteria). The genus Bacillus was predominant in the forest and monoculture areas. Fourteen isolates presented the nifH gene. Most of the bacteria were able to solubilize aluminum phosphate and synthetize indole compounds. The results indicated high diversity of endophytic bacteria present among the roots of Brazil nut trees, mainly in the agroforestry area, which could be related to soil attributes. Among the 90 isolates, the 22 that presented the best results regarding plant growth promotion traits were good candidates for testing in seedling production of Brazil nut trees. (AU)


Subject(s)
RNA, Ribosomal, 16S , Amazonian Ecosystem , Indole Alkaloids , Bertholletia , Nitrogen Fixation
9.
J Biosci ; 2019 Oct; 44(5): 1-16
Article | IMSEAR | ID: sea-214178

ABSTRACT

Microbial community structure of crude petroleum oil (CP)- and refined petroleum oil (RP)-contaminated soil wasinvestigated. The taxonomical and functional diversity of such soils can be a great source of information about microbialcommunity and genes involved in petroleum hydrocarbon (PHC) degradation. In this study, microbial diversity of soilscontaminated by RP from urban biome of Pune, India, and CP from agricultural biome of Gujarat, India, were assessed by16S rRNA amplicon sequencing on Illumina MiSeq platform. Association between the soil microbial community and thephysicochemical parameters were investigated for their potential role. In RP- and CP-contaminated soils, the microbiomeanalysis showed Proteobacteria as most dominant phylum followed by Actinobacteria. Interestingly, Firmicutes were mostprevailing in a CP-contaminated sample while they were least prevailing in RP-contaminated soils. Soil moisture content,total organic carbon and organic nitrogen content influenced the taxa diversity in these soils. Species richness was more inRP as compared to CP soils. Further prediction of metagenome using PICRUSt revealed that the RP and CP soils containmicrobial communities with excellent metabolic potential for PHC degradation. Microbial community contributing to genesessential for soil health improvement and plant growth promotion was also gauged. Our analysis showed promising resultsfor future bioaugmentation assisted phytoremediation (BAP) strategies for treating such soils.

10.
Article | IMSEAR | ID: sea-209835

ABSTRACT

Siderophores are low molecular weight iron chelating secondary metabolites synthesized by various groupsof microorganisms help in scavenging iron-limited conditions. Siderophores produced by endophytic bacteriafacilitate the plant growth by providing iron to plants. The objective of this study was to isolate and screenthe siderophore producing endophytes from nodules and roots of Cicer arietinum and Pisum sativum plants.Out of total 84 isolates, only 14 endophytes produced siderophore and quantitative analysis was also done.Ten best siderophore producers (above 65% siderophore units) were characterized for the type of siderophoreproduced. Most of them were producing hydroxamate and carboxylate type of siderophores. These 10 isolateswere evaluated for other plant growth promoting (PGP) traits in vitro. All of them were producing ammoniaand indole-3-acetic acid (IAA). Isolate CPFR10 was found to be positive for all the PGP traits viz. ammonia,organic acid, HCN, and IAA production. Diversity analysis of these 10 isolates using Amplified rDNARestriction Analysis profile revealed nine genotypes at 90% similarity

11.
Article | IMSEAR | ID: sea-188008

ABSTRACT

A total of 200 of Crassostrea virginica populations of average weight range from 41.19 ± 3.42 to 47.53 ± 1.06 g were studied to determine the effect of the feed diets of Caulerpa lentillifera and sucrose as growth enhancement. Growth rates increased that range from 56.99 ± 3.16 to 61.56 ± 2.87 g for 90 days period using an artificial water tank system. Previous studies conducted that C. lentillifera contained high protein and were the most abundant component. This seaweed also contained high amounts of minerals and balanced amino acid and notably very rich in iodine. phosphorus, calcium, magnesium and copper that will contribute to oysters growth. Oysters are known to have the ability to uptake dissolved organic matter as nutrients. In the present study, the effects of culture water supplemented with sucrose were tested on oysters. Results revealed that this organic matter promotes growth to the oysters. Sugars will be metabolized into pyruvate through the glycolysis pathway and will result in the supply of energy. Therefore, supplementation of sugar to oysters may have contributed as an energy source together with the lipid and protein content from the algae diet.

12.
China Journal of Chinese Materia Medica ; (24): 1517-1523, 2019.
Article in Chinese | WPRIM | ID: wpr-774527

ABSTRACT

The present study was conducted to explore the effect of endophytic fungi fraction on growth and anti-oxidative activity of Eleutherococcus senticosus. The growth,yield,contents of MDA,and antioxidant activities were assessed in E. senticosus under five fungi fractions,namely BZ,MH,DT,JS,and XFZ. The results showed that fungi fractions and component significantly affected the growth,low concentration of DT fungi fraction significantly increased the biomass of E. senticosus,reduced the MDA content in cells,and the antioxidant activities of the aqueous extracts were superior to the others. The results indicated that low concentration of DT fungi fraction was the optimum fraction to achieve high yield and quality of E. senticosus.


Subject(s)
Antioxidants , Metabolism , Eleutherococcus , Metabolism , Fungi , Chemistry , Malondialdehyde , Metabolism , Oxidative Stress
13.
Braz. j. microbiol ; 49(2): 232-239, Apr.-June 2018. tab, graf
Article in English | LILACS | ID: biblio-889220

ABSTRACT

Abstract Biofertilizer Ning shield was composed of different strains of plant growth promotion bacteria. In this study, the plant growth promotion and root-knot nematode disease control potential on Trichosanthes kirilowii in the field were evaluated. The application of Ning shield significantly reduced the diseases severity caused by Meloidogyne incognita, the biocontrol efficacy could reached up to 51.08%. Ning shield could also promote the growth of T. kirilowii in the field by increasing seedling emergence, height and the root weight. The results showed that the Ning shield could enhance the production yield up to 36.26%. Ning shield could also promote the plant growth by increasing the contents of available nitrogen, phosphorus, potassium and organic matter, and increasing the contents of leaf chlorophyll and carotenoid pigment. Moreover, Ning shield could efficiently enhance the medicinal compositions of Trichosanthes, referring to the polysaccharides and trichosanthin. Therefore, Ning shield is a promising biofertilizer, which can offer beneficial effects to T. kirilowii growers, including the plant growth promotion, the biological control of root-knot disease and enhancement of the yield and the medicinal quality.


Subject(s)
Animals , Plant Diseases/therapy , Tylenchoidea/growth & development , Plant Roots/parasitology , Trichosanthes/growth & development , Trichosanthes/parasitology , Agriculture/methods , Fertilizers , Plant Growth Regulators/analysis , Trichosanthes/chemistry , Plant Development
14.
Rev. argent. microbiol ; 50(2): 178-188, jun. 2018. graf, tab
Article in Spanish | LILACS | ID: biblio-977233

ABSTRACT

Una alternativa para el manejo sustentable en el cultivo de Capsicum annuum L. se ha enfocado en el uso de bacterias promotoras del crecimiento vegetal (BPCV) y hongos micorrícicos arbusculares (HMA). Esta investigación seleccionó BPCV y HMA sobre la base de su efecto en plantas de chile Bell Pepper y jalapeño. Se utilizaron 5 cepas bacterianas aisladas de diferentes localidades del estado de México (P61 [Pseudomonas tolaasii], A46 [P. tolaasii], R44 [Bacillus pumilus], BSP1.1 [Paenibacillus sp.] y OLs-Sf5 [Pseudomonas sp.]) y 3 tratamientos con HMA (H1 [consorcio aislado de la rizosfera de chile en el estado de Puebla], H2 [Rhizophagus intraradices]y H3 [consorcio aislado de la rizosfera de limón del estado de Tabasco]). Además, se incluyó un tratamiento fertilizado (solución Steiner 25%) y un testigo absoluto. Plántulas de chile jalapeño «Caloro¼ y pimiento Bell Pepper «California Wonder¼ fueron inoculadas con HMA en el momento de la siembra y con BPCV 15 días después de emerger, y crecidas bajo condiciones de cámara de ambiente controlado. En chile jalapenño, la mejor cepa bacteriana fue P61 y el mejor tratamiento de HMA fue el H1; en Bell Pepper la mejor cepa fue R44 y los mejores HMA fueron el H3 y el H1. Estos microorganismos incrementaron el crecimiento de plántulas de chile jalapenño y Bell Pepper en comparación con el testigo sin fertilizar. Asimismo, P61 y R44 beneficiaron positivamente la capacidad fotosintética del PSII.


Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) are a biological alternative for the sustainable management of Capsicum annuum L. This research work evaluated the effects of both PGPR and AMF on bell pepper and jalapeno pepper plants. Five bacterial strains isolated from several locations in Estado de Mexico were used: [P61 (Pseudomonas tolaasii), A46 (P. tolaasii), R44 (Bacillus pumilus), BSP1.1 (Paenibacillus sp.), and OLs-Sf5 (Pseudomonas sp.)], and three treatments with AMF [H1 (consortium isolated from pepper crops in the State of Puebla), H2 (Rhizophagus intraradices), and H3 (consortium isolated from the rhizosphere of lemon trees, State of Tabasco)]. In addition, a fertilized treatment (Steiner nutrient solution at 25%) and an unfertilized control were included. Seedlings of "Caloro" jalapeno pepper and "California Wonder" bell pepper were inoculated with AMF at seed sowing, and PGPR were inoculated after 15 days of seedling emergence; seedlings were grown under plant growth chamber conditions. P61 bacterium and H1 AMF consortia were the most effective microorganisms for jalapeno pepper whereas R44 bacterium and AMF H3 and H1 were the most effective for bell peppers, when compared to the unfertilized control. Furthermore, P61 and R44 bacteria showed beneficial effects on PSII efficiency.


Subject(s)
Capsicum , Mycorrhizae , Photosystem II Protein Complex , Capsicum/physiology , Capsicum/growth & development , Plant Roots , Seedlings , Photosystem II Protein Complex/physiology , Mexico
15.
Rev. cuba. invest. bioméd ; 37(1): 11-21, ene.-mar. 2018. ilus, tab
Article in Spanish | LILACS, CUMED | ID: biblio-991087

ABSTRACT

La bacteriemia es una complicación grave de las infecciones bacterianas. Un diagnóstico temprano del microorganismo responsable permite aplicar tratamientos efectivos en menor intervalo de tiempo. Los hemocultivos son diagnosticadores clínicos diseñado para este fin. Objetivo: Realizar un estudio de estabilidad acelerado de un lote del hemocultivo HemoCen Aerobio que permita planificar su diseño en estante en condiciones reales. Métodos: Se formuló un lote del hemocultivo HemoCen Aerobio en el Centro Nacional de Biopreparados, BioCen y se envasó asépticamente en los Laboratorios Biológicos Farmacéuticos, LABIOFAM. Se llevó a cabo un estudio de estabilidad acelerado por el Método de Arrenhius. Los frascos se conservaron durante 120 días a 15 °C, 30 °C y 50 °C. Se realizaron evaluaciones físico-químicas, organolépticas y capacidad de promoción de crecimiento de Staphylococcus aureus ATCC 25923 a los 7, 15, 30, 60 y 120 días. Resultados: El estudio de estabilidad demostró que el pH y el color del medio se deterioran progresivamente en el tiempo cuando las temperaturas aumentan entre 30 °C y 50 °C. La promoción de crecimiento de Staphylococcus aureus resultó favorable con índices de recuperación entre 20 y 40 UFC·frasco-1. Discusión: HemoCen Aerobio resulta funcional con un desempeño analítico satisfactorio, cuyos índices de recuperación microbiana se encuentran acorde a los valores reportados en bacteriemias de escasa magnitud. Estos resultados sientan las bases para planificar un estudio de estabilidad en estante en condiciones reales. Conclusión: Se estima un período de validez de 2 años(AU)


Bacteremia is a serious complication of bacterial infections. Early diagnosis of the causative organism allows applying appropriate treatments in a shorter time interval. Hemocultures are clinical diagnosticians designed for this purpose. Objective: Perform an accelerated stability study of a batch of HemoCen Aerobic hemoculture that allows planning its shelf designed in true conditions. Methods: A batch of HemoCen Aerobic hemoculture was formulated at the National Bioproducts Center, BioCen, and aseptically packaged at the Biological Pharmaceutical Laboratories, LABIOFAM. An accelerated stability study was carried out by the Arrenhius Method. The bottles were stored for 120 days at 15 °C, 30 °C and 50 °C. Physicochemical, organoleptic and growth promotion capacity evaluations of Staphylococcus aureus ATCC 25923 were realized at 7, 15, 30, 60 and 120 days. Results: The stability study demonstrated that the pH and the color of the medium progressively deteriorate over time as temperatures increase between 30 °C and 50 °C. Growth promotion of Staphylococcus aureus was favorable with recovery rates between 20 and 40 CFU bottle-1. Discussion: HemoCen Aerobic is functional with a satisfactory analytical performance, which recovery rates are consistent with the values reported in bacteremia of low magnitude. These results provide the basis for planning a shelf stability study under real conditions. Conclusion: A durability period of 2 years was estimated(AU)


Subject(s)
Humans , Bacteremia/diagnosis , Early Diagnosis , Blood Culture/methods
16.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469639

ABSTRACT

Abstract Bacterial endophytes are considered to have a beneficial effect on host plants, improving their growth by different mechanisms. The objective of this study was to investigate the capacity of four endophytic Bacillus strains to solubilize iron phosphate (Fe-P), produce siderophores and indole-acetic acid (IAA) in vitro, and to evaluate their plant growth promotion ability in greenhouse conditions by inoculation into pearl millet cultivated in a P-deficient soils without P fertilization, with Araxá rock phosphate or soluble triple superphosphate. All strains solubilized Fe-P and three of them produced carboxylate-type siderophores and high levels of IAA in the presence of tryptophan. Positive effect of inoculation of some of these strains on shoot and root dry weight and the N P K content of plants cultivated in soil with no P fertilization might result from the synergistic combination of multiple plant growth promoting (PGP) traits. Specifically, while B1923 enhanced shoot and root dry weight and root N P content of plants cultivated with no P added, B2084 and B2088 strains showed positive performance on biomass production and accumulation of N P K in the shoot, indicating that they have higher potential to be microbial biofertilizer candidates for commercial applications in the absence of fertilization.

17.
Journal of Zhejiang University. Science. B ; (12): 776-784, 2018.
Article in English | WPRIM | ID: wpr-1010418

ABSTRACT

Chlortetracycline (CTC), one kind of common antibiotic for prevention and treatment of various diseases, also exhibits good performance in accelerating the growth of livestock. Macleaya cordata, a traditional Chinese medicine, is usually used as a natural additive in livestock because of its anti-microbial, anti-fungal, anti-inflammatory, and pesticidal activity. In this work, we studied whether M. cordata helps regulate the growth-promoting effect of CTC on broiler chickens. It is demonstrated that M. cordata improves the growth-promoting effect of CTC on growth performance indices of broiler chickens, such as survival rate, daily weight, and feed to weight rate. M. cordata also delays the maximum of CTC residues in plasma. It may depend on the higher values of operational taxonomic unit (OTU) and the indices of α diversity driven by simultaneous use of CTC and M. cordata.


Subject(s)
Animals , Female , Male , Anti-Bacterial Agents/pharmacology , Chickens/growth & development , Chlortetracycline/pharmacology , Drugs, Chinese Herbal/pharmacology , Duodenum/pathology , Gastrointestinal Microbiome , Medicine, Chinese Traditional
18.
Braz. j. microbiol ; 49(supl.1): 40-46, 2018. tab
Article in English | LILACS | ID: biblio-974339

ABSTRACT

Abstract Bacterial endophytes are considered to have a beneficial effect on host plants, improving their growth by different mechanisms. The objective of this study was to investigate the capacity of four endophytic Bacillus strains to solubilize iron phosphate (Fe-P), produce siderophores and indole-acetic acid (IAA) in vitro, and to evaluate their plant growth promotion ability in greenhouse conditions by inoculation into pearl millet cultivated in a P-deficient soils without P fertilization, with Araxá rock phosphate or soluble triple superphosphate. All strains solubilized Fe-P and three of them produced carboxylate-type siderophores and high levels of IAA in the presence of tryptophan. Positive effect of inoculation of some of these strains on shoot and root dry weight and the N P K content of plants cultivated in soil with no P fertilization might result from the synergistic combination of multiple plant growth promoting (PGP) traits. Specifically, while B1923 enhanced shoot and root dry weight and root N P content of plants cultivated with no P added, B2084 and B2088 strains showed positive performance on biomass production and accumulation of N P K in the shoot, indicating that they have higher potential to be microbial biofertilizer candidates for commercial applications in the absence of fertilization.


Subject(s)
Bacillus/metabolism , Food/metabolism , Pennisetum/growth & development , Pennisetum/microbiology , Endophytes/metabolism , Indoleacetic Acids/metabolism , Phosphates/analysis , Phosphates/metabolism , Bacillus/genetics , Siderophores/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Pennisetum/metabolism , Endophytes/genetics , Iron/metabolism
19.
Rev. colomb. biotecnol ; 19(2): 47-62, jul.-dic. 2017. tab, graf
Article in Spanish | LILACS | ID: biblio-900437

ABSTRACT

Resumen El tamo de arroz es uno de los residuos agrícolas lignocelulósicos más abundantes en el planeta, luego de los residuos producidos por los cultivos de maíz y trigo, con una producción mundial estimada de 1000 millones de toneladas según estadísticas de la FAO. En el contexto de la agricultura moderna es determinante lograr un manejo ambientalmente sostenible de este recurso mediante su incorporación al suelo, de tal forma que se logre el reciclaje de nutrientes, evitando la incorporación de patógenos al sistema y la inmovilización de elementos como el nitrógeno por la comunidad microbiana. El objetivo de este trabajo consistió en la evaluación de un inoculo microbiano mixto a partir de productos comerciales basados en hongos del género Trichoderma y bacterias aerobias formadoras de endosporas, con potencial degradador del tamo de arroz, así como el empleo de bacterias promotoras de crecimiento vegetal al momento de la siembra, que pudieran aprovechar los nutrientes del proceso de descomposición del tamo de arroz, potenciando su actividad biológica. Los tratamientos fueron evaluados bajo diferentes relaciones C:N del tamo de arroz que favorecieran el proceso de degradación, mediante la adición de nitrógeno inorgánico. Los resultados del trabajo permitieron identificar que la aplicación de una enmienda de nitrógeno a una relación C:N 35 más una dosis adicional de urea al momento de la siembra de las semillas de arroz, fue el tratamiento más adecuado para potenciar el efecto de los microorganismos e incrementar las variables agronómicas obtenidas mediante un esquema de fertilización convencional del cultivo.


Abstract Rice straw is one of the most abundant lignocellulosic agricultural residues on the world, after residues produced by maize and wheat crops, with an estimated global production of 1000 million tones according to FAO statistics. In the context of modern agriculture, it is essential to achieve an environmentally sustainable management of this resource, through the incorporation of rice straw into the soil, in order to achieve nutrient recycling avoiding the incorporation of pathogens into the system and the losses of nitrogen due to soil microbial biomass immobilization. In this context, the objective of this work consisted in the evaluation of a mixed microbial inoculum with degrading potential of rice straw from commercial products based on the fungus Trichoderma spp. and aerobic endospore forming bacteria. It was also used a plant growth promoting bacteria at the time of planting, in order to take advantage of nutrients released from RS decomposition and improve its biological activity. These microbial treatments, were evaluated at different concentrations of inorganic nitrogen amendments that allowed different levels of rice straw´s C:N ratio, favoring the degradation process. Overall results allowed to identify that the application of a nitrogen amendment to rice straw up to C:N 35, plus an additional dose of urea at the time of rice seeds planting, was the most adequate treatment to potentiate the effect of the microorganisms and to increase or maintain the agronomic variables obtained through a conventional fertilization management of the crop.

20.
Mycobiology ; : 373-383, 2015.
Article in English | WPRIM | ID: wpr-729600

ABSTRACT

Five halophytic plant species, Suaeda maritima, Limonium tetragonum, Suaeda australis, Phragmites australis, and Suaeda glauca Bunge, which are native to the Muan salt marsh of South Korea, were examined for fungal endophytes by sequencing the internal transcribed spacer (ITS) region containing ITS1, 5.8S rRNA, and ITS2. In total, 160 endophytic fungal strains were isolated and identified from the roots of the 5 plant species. Taxonomically, all 160 strains belonged to the phyla Ascomycota, Basidiomycota, and Zygomycota. The most dominant genus was Fusarium, followed by the genera Penicillium and Alternaria. Subsequently, using 5 statistical methods, the diversity indices of the endophytes were determined at genus level. Among these halophytic plants, P. australis was found to host the greatest diversity of endophytic fungi. Culture filtrates of endophytic fungi were treated to Waito-C rice seedlings for plant growth-promoting effects. The fungal strain Su-3-4-3 isolated from S. glauca Bunge provide the maximum plant length (20.1 cm) in comparison with wild-type Gibberella fujikuroi (19.6 cm). Consequently, chromatographic analysis of the culture filtrate of Su-3-4-3 showed the presence of physiologically active gibberellins, GA(1) (0.465 ng/mL), GA(3) (1.808 ng/mL) along with other physiologically inactive GA(9) (0.054 ng/mL) and GA(24) (0.044 ng/mL). The fungal isolate Su-3-4-3 was identified as Talaromyces pinophilus.


Subject(s)
Alternaria , Ascomycota , Basidiomycota , Chenopodiaceae , Endophytes , Fungi , Fusarium , Genetic Variation , Gibberella , Gibberellins , Korea , Penicillium , Plants , Plumbaginaceae , Salt-Tolerant Plants , Seedlings , Talaromyces , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL