Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Chinese Pharmacological Bulletin ; (12): 431-439, 2024.
Article in Chinese | WPRIM | ID: wpr-1013653

ABSTRACT

Aim To investigate the regulatory effect of geraniol on Nrf2/HO-1 signaling pathway after cerebral ischemia-reperfusion(I/R)in rats. Methods In this experiment,all the male SD rats were randomly divided into nine groups receiving the following treatments:sham operation(sham); sham operation+200 mg·kg-1 geraniol; I/R; I/R+50 mg·kg-1 geraniol; I/R+100 mg/kg geraniol; I/R+200 mg·kg-1 geraniol; edaravone; I/R+ brusatol(Nrf2 inhibitor); I/R+200mg·kg-1 geraniol+brusatol. All rats received intraperitoneal injection of geraniol for five consecutive days before MCAO and again after MCAO. During the construction of cerebral I/R injury models,the blood vessels were isolated without any suture in the sham operation and the sham operation +200 mg·kg-1 geraniol groups while the blood vessels with suture in other groups. The damage of neurological function was evaluated by the modified rating scale for neurological function. The TTC,HE and Tunel staining methods were used to determine the cerebral infarction volume,the damage of the ischemic cortex and the apoptosis of cortical cells,respectively. The oxidative stress-related parameters then were measured. The protein expressions of Nrf2 and HO-1 were detected by immunohistochemical staining and the target protein expressions of the injured cortex were detected by Western blot. Results Compared with the model group,it was found that the geraniol treatment significantly repaired neural injury,reduced cerebral infarction volume,cerebral cortex damage and cell apoptosis. Meanwhile,geraniol intervention could significantly increase the expression of Nrf2/HO-1 protein in the right-sided cortex and reduce oxidative stress level. Conclusion Geraniol can attenuate cerebral injury induced by ischemia-reperfusion in rats via activating Nrf2/HO-1 signaling pathway.

2.
Chinese Pharmacological Bulletin ; (12): 551-556, 2024.
Article in Chinese | WPRIM | ID: wpr-1013582

ABSTRACT

Aim To explore the role of SIRT1/Nrf2 / HO-1 in alleviating the cognitive function impairment by sevoflurane treatment in a mouse model of postoperative cerebral reperfusion. Methods C57BL/6J mice were randomly divided into five groups: sham operation group, hemorrhagic shock reperfusion group, sevoflurane postconditioning group, sevoflurane postcondition-ing + SIRT1 inhibitor group and sevoflurane postconditioning + Nrf2 inhibitor group. Mice were subjected to Morris water maze test after cerebral ischemia reperfusion. The ATP, superoxide dismutase (SOD), ROS and MDA contents in tissue of mice were detected. SIRT1, Nrf2 and HO-1 proteins in tissue were detected by Western blot. Results After hemorrhagic shock, the learning and memory ability of mice was reduced.ATP and SOD concentration in hippocampus was reduced , MDA and ROS concentration increased, and the SIRT, Nrf2 and HO-1 concentration was reduced. Sevoflurane improved the cognitive dysfunction and oxi-dative damage in postoperative mice, and the neuro-protective effect of sevoflurane on hemorrhagic shock and resuscitation mice was weakened followed with SIRT1 and Nrf2 inhibitors. Conclusion Sevoflurane probably alleviates the oxidative reaction damage and cognitive impairment caused by cerebral reperfusion in mice through SIRT1/Nrf2/H0-1 pathway.

3.
China Pharmacy ; (12): 671-677, 2024.
Article in Chinese | WPRIM | ID: wpr-1013100

ABSTRACT

OBJECTIVE To investigate the intervention effect and potential mechanism of breviscapine on hepatic fibrosis (HF) in rats based on the transforming growth factor-β(1 TGF-β1)/Smad2/extracellular signal-regulated protein kinase 1(ERK1) and Kelch-like epichlorohydrin-associated protein 1(Keap1)/nuclear factor-erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) pathways. METHODS Totally 60 rats were randomly divided into normal control group, model group, breviscapine low-dose, medium-dose and high-dose groups (5.4, 10.8, 21.6 mg/kg), and colchicine group (positive control, 0.45 mg/kg), with 10 rats in each group, half male and half female. Except for the normal control group, HF model of the other groups was induced by carbon tetrachloride. Subsequently, each drug group was given corresponding medicine by gavage once a day for 28 days. The liver appearance of rats in each group was observed and their liver coefficients were calculated. The levels of alanineaminotransferase (ALT) and aspartate aminotransferase (AST)in serum, those of ALT, AST, superoxide dismutase (SOD),malondialdehyde (MDA) and glutathione peroxidase (GSH- Px) in liver tissue were detected. The liver tissue inflammatory and fibrotic changes were observed. The protein and mRNA expressions of TGF-β1, Smad2, ERK1, Nrf2, Keap1 and HO-in liver tissue were detected. RESULTS Compared with the normal control group, the model group showed large areas of white nodular lesions in the liver, obvious inflammatory cell infiltration and collagen fiber deposition. The body weight, the levels of SOD and GSH-Px in liver tissue, the protein and mRNA expressions of Nrf2 and HO-1 were significantly lowered in the model group (P<0.05); the liver coefficient, the percentage of Masson staining positive area, ALT and AST levels of serum and liver tissue, MDA level of liver tissue, the protein and mRNA expressions of TGF-β1, Smad2, ERK1 and Keap1 were significantly increased (P<0.05). Compared with the model group, the liver lesions of rats in each drug group were improved, and the above quantitative indexes were generally reversed (P<0.05). CONCLUSIONS Breviscapine has a good intervention effect on HF rats, which may be related to inhibiting TGF-β1/Smad2/ERK1 pathway for anti-fibrosis and regulating Keap1/Nrf2/HO-1 pathway to inhibit oxidative stress.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 131-139, 2024.
Article in Chinese | WPRIM | ID: wpr-1011451

ABSTRACT

ObjectiveTo investigate the effect and mechanism of Shenqi Tangluo pill (SQTLP) on oxidative stress injury of skeletal muscle of type 2 diabetes mellitus (T2DM) mice based on nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/NAD(P)H quinone oxidoreductase 1 (NQO1) pathway. MethodA total of 60 7-week-old male db/db mice [specific pathogen-free (SPF) grade] were selected and fed for one week for adaption. They were divided into the model control group, SQTLP low-, medium- and high-dose (19, 38, and 76 g·kg-1) groups and metformin group (0.26 g·kg-1) by gavage. Each group consisted of 12 mice. Twelve male db/m mice of the same age were selected as the blank group. The intervention was implemented continuously for 8 weeks. Fasting blood glucose (FBG) was detected. Fasting serum insulin (FINS) levels were detected by enzyme-linked immunosorbent assay (ELISA), and the homeostasis model assessment-insulin resistance (HOMA-IR) index and the homeostasis model assessment-insulin sensitivity index (HOMA-ISI) were calculated. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were conducted. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the contents of malondialdehyde (MDA) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) in skeletal muscle tissues were detected by biochemical kits. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in skeletal muscle tissues. The levels of reactive oxygen species (ROS) and 4-hydroxynonenal (4-HNE) in skeletal muscle tissue were detected by immunofluorescence (IF). The expression levels of Nrf2, HO-1, NQO1 and glutamate-cysteine ligase catalytic subunit (GCLC) proteins in skeletal muscle tissues were detected by Western blot. ResultCompared with those in the blank group, FBG, FINS and HOMA-IR in the model group were significantly increased (P<0.05), while HOMA-ISI was decreased (P<0.05). The results of OGTT and ITT showed that blood glucose was significantly increased at all time points (P<0.05), and glucose tolerance and insulin tolerance were significantly impaired. SOD and GSH-Px activities in skeletal muscle tissues were significantly decreased (P<0.05), and MDA and NADPH contents were significantly increased (P<0.05). In skeletal muscle tissues, the arrangement of muscle fibers was loose, the nucleus was disordered, and inflammatory cells were infiltrated. The expression levels of ROS and 4-HNE in skeletal muscle tissues were significantly increased (P<0.05). The protein expression levels of Nrf2, HO-1, NQO1 and GCLC in skeletal muscle tissues were significantly decreased (P<0.05). Compared with those in the model group, FBG, FINS and HOMA-IR in the metformin group were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that blood glucose in the metformin group was significantly decreased at all time points (P<0.05). The activities of SOD and GSH-Px in skeletal muscle tissues were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). No obvious abnormality was found in the skeletal muscle tissue of the metformin group. The expressions of ROS and 4-HNE in skeletal muscle tissues were decreased (P<0.05). The protein expression levels of Nrf2, HO-1, NQO1 and GCLC in skeletal muscle tissues were significantly increased (P<0.05). Compared with those in the model group, FBG, FINS and HOMA-IR in the SQTLP medium- and high-dose groups were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that the glucose tolerance and insulin tolerance of mice were improved in each dose group of SQTLP. The GSH-Px activity in the SQTLP low-dose group was significantly increased (P<0.05), and the NADPH content was decreased (P<0.05). The activities of SOD and GSH-Px in the SQTLP medium- and high-dose groups were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). The skeletal muscle tissue injury of mice in each dose group of SQTLP was ameliorated to different degrees. In the SQTLP medium- and high-dose groups, the expressions of ROS and 4-HNE were decreased (P<0.05), and the protein expression levels of Nrf2, HO-1, NQO1 and GCLC were significantly increased (P<0.05). Compared with those in the SQTLP low-dose group, FBG and HOMA-IR in the SQTLP high-dose group were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that the SQTLP high-dose group significantly improved the glucose tolerance and insulin tolerance of mice. The activities of SOD and GSH-Px in skeletal muscle tissues were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). No obvious abnormality was found in the skeletal muscle tissue, the expressions of ROS and 4-HNE were decreased (P<0.05), and the protein expression levels of Nrf2, HO-1, NQO1 and GCLC were significantly increased (P<0.05) in the skeletal muscle tissue of the SQTLP high-dose group. ConclusionSQTLP can significantly improve IR in T2DM mice, and the mechanism is related to SQTLP activating the Nrf2/HO-1/NQO1 signaling pathway, promoting the expression of antioxidant enzymes, and thus improving the oxidative stress injury in the skeletal muscle.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 265-271, 2024.
Article in Chinese | WPRIM | ID: wpr-1006292

ABSTRACT

Acute pancreatitis (AP) is a common clinical acute abdominal disease, which is characterized by acute onset, rapid development, severe disease, many complications, and high mortality rate. It can progress to severe AP (SAP) if not treated promptly in the early stage. The pathogenesis of AP is complex and involves multiple cellular and molecular levels. It is now clear that oxidative stress and reactive oxygen species (ROS) production are involved in the physiopathological process of AP, which is associated with a low quantity and activity of antioxidant enzymes in pancreatic cells. Nuclear factor E2-related factor 2 (Nrf2) serves as the ''golden key'' to maintain redox homeostasis in tissue cells and constitutes an important signaling pathway for antioxidant response and inflammation in vivo by collaborating with downstream antioxidant enzymes such as heme oxygenase-1 (HO-1). Traditional Chinese medicine has unique efficacy in treating diseases due to its multi-component, multi-target, multi-drug delivery, and multi-formulation characteristics. Based on the concept of synergy between traditional Chinese and Western medicine, traditional Chinese medicine is becoming a new craze in the treatment of AP. The level of oxidative stress and Nrf2/HO-1 signaling pathway in AP pancreatic tissue are in a dynamic change process, and the intervention of traditional Chinese medicine can clean ROS production, affect the inflammatory pathway, and reduce oxidative stress damage, so as to protect against pancreatic injury. This suggests that this pathway plays an important role in AP. This article reviews the recent literature on the regulation of the Nrf2/HO-1 signaling pathway by traditional Chinese medicine for AP and summarizes that the monomers of traditional Chinese medicine targeting this pathway are mainly heat-clearing and detoxifying, blood-activating and blood-stasis-removing, and Qi benefiting and middle warming, and the compounds of traditional Chinese medicine include Yinchenhao Decoction and QingYi Ⅱ, so as to provide a new direction for the prevention and treatment of AP and further drug development.

6.
Journal of Traditional Chinese Medicine ; (12): 205-212, 2024.
Article in Chinese | WPRIM | ID: wpr-1005372

ABSTRACT

ObjectiveTo investigate the possible mechanism of Guben Fangxiao Beverage (固本防哮饮) for the prevention and treatment of chronic airway inflammation during asthma remission. MethodsThirty-six female Balb/c mice were randomly divided into normal group, model group, low-, medium-, and high-dose of Guben Fangxiao Beverage group and montelukast sodium group, with 6 mice in each group. Except for the normal group, ovalbumin and respiratory syncytial virus were used in other groups to establish a mouse model of bronchial asthma in remission stage. After molding, the low-, medium-, and high-dose groups of Guben Fangxiao Beverage were respectively given 12, 24, and 36 g/(kg·d), the montelukast sodium group was given montelukast sodium granule 2.6 mg/(kg·d), and the mice in the normal group and model group were given 20 ml of double-distilled water, all by gavage, once a day for 28 days. The levels of interleukin 4 (IL-4) and interleukin 5 (IL-5) in the lung tissue of mice were detected; HE staining was used to observe the pathology of the lung tissue and to score the inflammation; DHE staining was used to observe the level of reactive oxygen species (ROS) in the lung tissue, and the activities of mitochondrial respiratory chain complexes Ⅰ, Ⅱ, Ⅲ, Ⅳ, and Ⅴ in the lung tissue were detected; the levels of serum superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and adenosine triphosphate (ATP) were detected; the protein expression levels of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK), nuclear factor erythroid 2-related factor 2 (Nrf2), haem oxygenase 1 (HO-1) and cAMP responsive element binding protein (CREB) in the lung tissues of the model group were detected by Western blot. ResultsCompared with the normal group, the histopathological results of the lungs of mice in the model group showed an increase in inflammatory cells around the airways and an increase in inflammatory score; DHE staining showed an increase in the level of ROS, and an increase in the levels of IL-4 and IL-5 in the lung tissues; the levels of serum SOD, CAT, and ATP were reduced, and the level of MDA was elevated; the activities of the mitochondrial respiratory chain complexes Ⅰ, Ⅱ, Ⅲ, Ⅳ, and Ⅴ of the lung tissues were reduced, and the activities of p-AMPK, Nrf2, CREB protein expression decreased (P<0.05). Compared with the model group, the lung tissue inflammatory cells and inflammation scores of mice in each Guben Fangxiao Beverage dose group and montelukast sodium group were reduced; the levels of ROS, IL-4 and IL-5 in the lung tissue were reduced; the levels of CAT and ATP in the serum increased, and the content of MDA was reduced; and the activities of mitochondrial respiratory chain complexes Ⅰ and Ⅱ, as well as the expression of CREB protein, were elevated in the lung tissue (P<0.05). Compared with the high-dose group, the MDA level of the medium-dose Guben Fangxiao Beverage group decreased (P<0.05). The activity of mitochondrial respiratory chain complex V in the medium-dose group was higher than that in the montelukast sodium group, and the activity of mitochondrial respiratory chain complex Ⅳ in the medium- and high-dose groups was higher than that in the low-dose group (P<0.05). ConclusionGuben Fangxiao Beverage can inhibit oxidative stress and improve mitochondrial function to relieve chronic airway inflammation in bronchial asthma model mice during asthma remission, and its mechanism may be related to the activation of AMPK/Nrf2/HO-1 signaling pathway.

7.
China Journal of Chinese Materia Medica ; (24): 5337-5344, 2023.
Article in Chinese | WPRIM | ID: wpr-1008731

ABSTRACT

This study aims to explore the effects of Shenqi Dihuang Decoction on high-glucose induced ferroptosis and the nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)/glutathione peroxidase 4(GPX4) axis in human renal tubular epithelial cells(HK-2) and to clarify the underlying mechanism. The cell injury model was established by exposing HK-2 to high glucose, and the Shenqi Dihuang Decoction-medicated serum was prepared. The optimal concentration and intervention time of Shenqi Dihuang Decoction were determined. HK-2 were divided into normal, high glucose, and low-, medium-, and high-dose Shenqi Dihuang Decoction groups. After interventions, the cell proliferation rate in each group was determined and the cell morphology and mitochondrial ultrastructure were observed. Then, the levels of intracellular reactive oxygen species(ROS), ferrous ion(Fe~(2+)), glutathione(GSH), and malondialdehyde(MDA) and the protein levels of Nrf2, HO-1, GPX4, and xCT were measured. The optimal concentration and intervention time of Shenqi Dihuang Decoction-medicated serum were determined to be 10% and 24 h, respectively. Compared with the high glucose group, high-dose Shenqi Dihuang Decoction promoted the proliferation of HK-2. The cells in the low-, medium-, and high-dose Shenqi Dihuang Decoction groups presented tight arrangement, an increased cell count, improved morphology from a spindle-fiber shape to a cobblestone shape, and improved morphology and structure of mitochondrial membrane and cristae, compared with those in the high glucose group. Meanwhile, all the doses of Shenqi Dihuang Decoction inhibited ROS elevation to mitigate the peroxidation damage, lowered the Fe~(2+) and MDA levels and elevated the GSH level to inhibit lipid peroxidation, and activated the antioxidant pathway to upregulate the protein levels of Nrf2, HO-1, xCT, and GPX4. In conclusion, Shenqi Dihuang Decoction-medicated serum can inhibit high-glucose induced ferroptosis of HK-2 in vitro, which involves the antioxidant effect and the activation of the Nrf2/HO-1/GPX4 pathway.


Subject(s)
Humans , Ferroptosis , NF-E2-Related Factor 2/genetics , Reactive Oxygen Species , Epithelial Cells , Antioxidants , Glutathione , Glucose
8.
China Journal of Chinese Materia Medica ; (24): 4834-4842, 2023.
Article in Chinese | WPRIM | ID: wpr-1008653

ABSTRACT

This study aims to investigate the effect and mechanism of total triterpenes of Euphorbium in treating rheumatoid arthritis(RA). The rat model of RA was established with Freund's complete adjuvant(FCA). Male rats were randomly assigned into control, model, Tripterygium glycosides(7.5 mg·kg~(-1)), and low-, medium-, and high-dose total triterpenes of Euphorbium(32, 64, and 128 mg·kg~(-1), respectively) groups, with 10 rats in each group. In other groups except the control group, 0.2 mL FCA was injected into the right hind toe. Rats in the intervention groups were administrated with corresponding drugs by gavage, and the control group and the model group with the same volume of 0.5% CMC-Na solution once a day. During the treatment period, the swelling degree of the hind paw was measured and the arthritis was scored until day 30. At the end of drug administration, the pathological changes of the joint tissue were observed by hematoxylin-eosin staining. The content of malondialdehyde(MDA), glutathione(GSH), and Fe~(2+) and the activity of superoxide dismutase(SOD) in the joint tissue were measured by biochemical colorimetry. RT-PCR was performed to determine the mRNA levels of nuclear factor erythroid 2-related factor 2(Nrf2), glutathione peroxidase 4(GPX4), and acyl-CoA synthetase long chain family member 4(ACSL4) in the joint tissue. Western blot was employed to determine the protein levels of Nrf2, Kelch-like ECH-associated protein 1(Keap1), heme oxygenase-1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), SOD2, GPX4, and ACSL4 in the joint tissue. The results showed that the treatment with Tripterygium glycosides(7.5 mg·kg~(-1)) and total triterpenes of Euphorbium(32, 64, and 128 mg·kg~(-1)) alleviated the swelling degree of bilateral hind limbs, decreased the arthritis score, reduced joint tissue lesions and the content of MDA and Fe~(2+) in the joint tissue, and increased GSH content and SOD activity. Furthermore, the interventions up-regulated the protein and mRNA levels of Nrf2 and GPX4, down-regulated the protein and mRNA levels of ACSL4, and up-regulated the protein levels of Keap1, NQO1, HO-1, and SOD2 in the Nrf2/HO-1/GPX4. In summary, the total triterpenes of Euphorbium can treat RA by inhibiting lipid peroxidation and abnormal ferroptosis, which may involve the Nrf2/HO-1/GPX4 signaling pathway.


Subject(s)
Rats , Male , Animals , Rats, Sprague-Dawley , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Triterpenes/pharmacology , Oxidative Stress , Arthritis, Rheumatoid/genetics , Glutathione , Superoxide Dismutase/metabolism , Glycosides/pharmacology , RNA, Messenger/metabolism
9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 248-255, 2023.
Article in Chinese | WPRIM | ID: wpr-975178

ABSTRACT

Myocardial infarction (MI) is a common cardiovascular disease in clinical practice and one of the main causes of cardiovascular mortality. Its pathogenesis is complex and associated with oxidative stress reactions. Nuclear factor E2-related factor 2 (Nrf2) is a key factor in regulating oxidative stress reactions. It can regulate the expression of heme oxygenase-1 (HO-1), playing a role in maintaining the oxidative-reductive homeostasis in the body. During the course of MI, the biological activity and levels of Nrf2 and HO-1 decrease, leading to weakened tissue antioxidant and anti-inflammatory capabilities, endothelial damage in myocardial blood vessels, release of vascular cell adhesion factors, and impaired endothelial function. In recent years, many basic research studies have explored the role and mechanisms of traditional Chinese medicine (TCM) in treating MI by modulating the Nrf2/HO-1 signaling pathway. The results have indicated that the Nrf2/HO-1 signaling pathway is an important potential target for TCM in the treatment of MI. This article reviewed the mechanism of the Nrf2/HO-1 signaling pathway in MI and the research progress of TCM in targeting and regulating this pathway, aiming to provide a theoretical basis for the prevention and treatment of MI and further drug development.

10.
China Pharmacy ; (12): 2855-2860, 2023.
Article in Chinese | WPRIM | ID: wpr-999217

ABSTRACT

OBJECTIVE To explore the role and underlying mechanism of tournefolic acid B (TAB) on the improvement of glucose metabolism and renal function in diabetic nephropathy (DN) model mice. METHODS DN model mice were established by high-fat diet combined with streptozotocin, and then randomly divided into model group, positive control group (vitamin E, 20 mg/kg), TAB low-dose, medium-dose and high-dose groups (1, 2, 4 mg/kg), with 12 mice in each group; normal control group was given regular diet. Each group was given relevant medicine or normal saline intragastrically, once a day, for 4 consecutive weeks. The glucose metabolic function was estimated by fasting blood glucose, glucose tolerance test, insulin tolerance test and serum insulin concentration. The renal coefficients and biochemical indicators related to renal function [serum uric acid, blood urea nitrogen, creatinine levels, and ratio of urine microalbumin to creatinine] were detected in mice; the contents of biochemical indicators related to oxidative stress [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG)] were determined in renal tissue of mice; the pathological morphology of renal tissue was observed; the expressions of extracellular matrix (ECM) deposition related factors [transforming growth factor β1 (TGF- β1), fibronectin (Fn), type Ⅳ collagen (Col Ⅳ)] and protein kinase B (Akt)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway related proteins were determined in renal tissue of mice. RESULTS Compared with normal control group, fasting blood glucose, area under glucose tolerance curve, area under insulin tolerance curve, serum insulin content, the levels of uric acid, urea nitrogen and creatinine @qq.com and ratio of urinary microalbumin to creatinine in serum, the contents of MDA and 8-OHdG and the protein expressions of TGF-β1, Fn and Col Ⅳ were increased significantly in model group (P<0.05), while the contents of SOD, GSH-Px and the protein expressions of p-Akt, Nrf2, HO-1 in renal tissue were decreased significantly (P<0.05); the significant thickening of the basement membrane, accumulation of mesangial matrix, glomerulosclerosis and interstitial fibrosis of the renal tubules were all found. Compared with model group, above indexes of mice were all reversed significantly in TAB groups (P<0.05), and pathological changes were alleviated in a dose-dependent manner. CONCLUSIONS TAB can improve blood glucose metabolism and kidney function and alleviate renal tubulointerstitial fibrosis in DN model mice, the mechanism of which may be associated with activating the Akt/Nrf2/HO-1 signaling pathway and suppressing ECM deposition.

11.
China Pharmacy ; (12): 2734-2739, 2023.
Article in Chinese | WPRIM | ID: wpr-998557

ABSTRACT

OBJECTIVE To explore the effects and potential mechanism of veratramine (VTM) on the proliferation of human glioblastoma U251 cells. METHODS The network pharmacology methods were adopted to screen the targets of ferroptosis related to the effects of VTM on glioblastoma, and to conduct gene ontology and Kyoto Encyclopedia of Genes and Genosomes enrichment analysis. Using U251 cells as the object, CCK-8 assay, the observation of cell morphological changes, DCFH-DA fluorescence probe method, FerroOrange fluorescence probe method and Western blot assay were used to validate the inhibitory effects of VTM on U251 cell proliferation and its possible mechanism. RESULTS Totally 462 targets of ferroptosis related to the effects of VTM on glioblastoma were screened out; they mainly enriched in biological processes such as oxidative stress and apoptosis, and cellular components such as cytoplasmic vesicles and mitochondrial membranes; they affected molecular functions such as iron ion (Fe2+) binding and DNA transcription processes, as well as iron death and phosphoinositide 3-kinase/protein kinase B signaling pathways. VTM with 40, 60, 80, 100, 120 and 140 μmol/L could significantly reduce the cell survival rate (P< 0.01); VTM with 40, 80 and 120 μmol/L could cause cell atrophy and nuclear fragmentation, significantly inhibit the clone formation, increase the levels of intracellular reactive oxygen species (ROS) and Fe2+ levels, increase the expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) protein to different extents, while down-regulate the expression of glutathione peroxidase 4 (GPX4) protein (P<0.05 or P<0.01). CONCLUSIONS VTM can inhibit the proliferation of U251 cells, and promote the accumulation of intracellular ROS and Fe2+, thus inducing ferroptosis; its mechanism might be related to the regulation of the Nrf2/HO-1/GPX4 signaling pathway.

12.
China Pharmacy ; (12): 2490-2496, 2023.
Article in Chinese | WPRIM | ID: wpr-997007

ABSTRACT

OBJECTIVE To investigate the effects of astaxanthin on oxidative stress and inflammatory reaction in rats with traumatic brain injury (TBI). METHODS Male SD rats were randomly divided into sham operation group, model group, astaxanthin low-dose group (20 mg/kg), astaxanthin high-dose group (40 mg/kg), astaxanthin+ML385 group [astaxanthin 40 mg/kg+ nuclear factor-erythroid 2-related factor 2 (Nrf2) inhibitor ML385 30 mg/kg], with 14 rats in each group. Except for the sham operation group, TBI model was induced by the modified Feeney free-fall impact method in other groups. The rats in each drug group were given the corresponding drug intragastrically or intraperitoneally, and the rats in the sham operation group and model group were intragastrically given a constant volume of normal saline. The neurological function of rats in each group was scored on the 1st, 3rd and 7th day after drug intervention; on the 7th day of drug intervention, the changes of cerebral histomorphology and inflammatory infiltration score were observed in each group, and the ultrastructure of nerve cells in brain tissue was also observed. The contents of oxidative stress indexes [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), nitric oxide (NO)] and inflammatory reaction indexes [tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, inducible nitric oxide synthase] as well as protein and mRNA expressions of Nrf2, heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) were detected in cerebral tissue. RESULTS Compared with the sham operation group, the brain edema of rats in the model group was obvious, accompanied by a large number of inflammatory cells infiltrated, the shape of organelles was damaged and their number was reduced, and the ultrastructure of nerve cells was seriously damaged. The neurological function score, the contents of SOD, CAT, GSH-Px and NO and the relative expression levels of Nrf2, HO-1 and NQO1 protein and mRNA in brain tissue were significantly decreased, while the inflammatory infiltration scores, the contents of MDA and inflammatory reaction indexes were significantly increased (P<0.05). Compared with the model group, low-dose and high-dose astaxanthin could significantly improve the pathological status of brain tissue and nerve cells and neurological function scores (except for the first day of drug intervention in the astaxanthin low-dose group), increase the contents of SOD, CAT, GSH-Px and NO and the relative expression levels of Nrf2, HO-1, NQO1 protein and mRNA in brain tissue in a dose-dependent manner, and reduce inflammatory infiltration scores, the contents of MDA and inflammatory reaction indexes (P<0.05). ML385 could significantly inhibit the above effects of astaxanthin (P<0.05). CONCLUSIONS Astaxanthin may reduce the oxidative stress of TBI model rats, alleviate the neurological damage and reduce the level of inflammation reaction by activating the Nrf2/HO-1 signaling pathway.

13.
International Eye Science ; (12): 1865-1869, 2023.
Article in Chinese | WPRIM | ID: wpr-996900

ABSTRACT

AIM:To analyze the correlation between serum nesfatin-1, apelin and heme oxygenase-1(HO-1)levels and the severity of diabetic retinopathy(DR).METHODS:Totally 100 patients with type 2 diabetes mellitus(T2DM)who were admitted to the hospital from September 2020 to September 2022 were selected. They were divided into non-DR(NDR)group(35 cases), nonproliferative DR(NPDR)group(33 cases)and proliferative DR(PDR)group(32 cases)according to the condition of fundus lesions. Another 30 healthy individuals who received health check-ups in the hospital during the same period were selected as the control group. Serum nesfatin-1, apelin and HO-1 levels in each group were detected, and panretinal ischemia index(ISI)was evaluated.RESULTS:Serum nesfatin-1 and HO-1 levels in the T2DM patients were lower, and apelin level was higher as compared with the control group. The levels of nesfatin-1 and HO-1 in the PDR group were the lowest, while the apelin level was the highest. Panretinal ISI in the PDR group was higher than that in the NPDR group(4.56±0.57 vs. 2.05±0.29, P&#x0026;#x003C;0.05). Correlation analysis found that serum nesfatin-1 and HO-1 levels were negatively correlated with panretinal ISI in patients with DR, while apelin level was positively correlated with panretinal ISI. The receiver operator characteristic(ROC)curve analysis found that the areas under the curves of serum nesfatin-1, apelin and HO-1 for predicting PDR were 0.842, 0.833 and 0.807 respectively.CONCLUSION:Serum nesfatin-1, apelin and HO-1 levels are closely related to the severity of DR. Dynamic monitoring of serum nesfatin-1, apelin and HO-1 levels is important for the early detection of PDR.

14.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 147-154, 2023.
Article in Chinese | WPRIM | ID: wpr-1014679

ABSTRACT

AIM: To explore schisandrin B (Sch B) pretreatment reduces intestinal ischemia reperfusion injury (IIRI) through inhibiting apoptosis by activation of Nrf2/HO-1 signing pathway in mice by network pharmacology and in vivo experiment. METHODS: (1) The targets of Sch B and IIRI were searched from online databases, Drawing Venn diagram to obtain the common target of them. Cytoscape software was imported to construct the protein-protein interaction (PPI) network to establish the "Drugs-Disease-core target gene" network. The mechanism of Sch B against IIRI was predicted through GO and KEGG enrichment analysis. (2) Thirty-six C57BL/6J mice were randomly divided into six groups (n = 6). The model of IIRI was established in four groups except the sham operation group. Three of the groups were pretreated with Sch B, Nrf2 inhibitor ML385, and Sch B + ML385, respectively. After the experiment, intestinal tissue samples were taken for HE staining, Chiu ' s score, apoptosis staining, immunohistochemistry (IHC), and immunoblotting (Western blot). RESULTS: A total of 412 Sch B related tar- gets, 2 166 IIRI related targets and 153 common targets were screened out through network pharmacology. There were 88 "Sch B-IIRI-core target gene" included NFE2L2 (Nrf2), HMOX1 (HO-1), BCL2, CASP3 (caspase 3), and so on. KEGG enrichment analysis screened 163 related pathways, apoptosis pathway ranked high showing that the pathway may play a key role in the treatment of IIRI by Sch B. The animal experiment had shown that Sch B reduced the Chiu's score and apoptotic while upregulating Nrf2, HO-1, Bcl-2 protein expression levels and Bcl-2/Bax, downregulating Bax, and cleaved caspase-3 expression levels, thereby reducing IIRI in mice, and that Nrf2 inhibitor ML385 reversed this process (P < 0.05). CONCLUSION: This study reveals that Sch B has the characteristics of multi-target and multi-pathway in the reduction of IIRI, and Sch B can reduce IIRI through inhibiting apoptosis by activation of Nrf2/ HO-1 pathway.

15.
Chinese Pharmacological Bulletin ; (12): 310-314, 2023.
Article in Chinese | WPRIM | ID: wpr-1013858

ABSTRACT

Aim To explore the mechanism of the natural phenolic compound pterostilbene(PTE)in the protection of liver ischemic/reperfusion. Methods A total of 40 C57 mice were divided into control group,model group,drug delivery group and treatment group and a 70% liver ischemic/reperfusion(ischemic 60 min)model was established,then primary LSECs were isolated by perfusion and digestion. Hepatic structural disruption was observed by HE staining. The ultrastructure of hepatic sinus endothelial cells was observed by transmission electron microscopy(TEM). The structure of LSECs fenestrae was observed by scanning electron microscopy(SEM). The expression level of heme oxygenase 1(HO-1)in LSECs was detected by Western blot. Results HE staining showed that PTE protected against hepatic ischemic injury. TEM observed that PTE had a protective effect on hepatic sinus endothelial cells,and the number of LSECs fenestrae in the blank control group was larger and the number of fenestrae in the liver I/R model group was reduced. The number of LSECs fenestrae in the liver I/R model group treated with PTE increased compared with the untreated liver I/R model group. Western blot result showed that PTE was able to induce HO-1 expression in LSECs. Conclusions PTE alleviates oxidative damage of endothelial cells in mouse hepatic sinus by inducing HO-1expression,and protects the liver from ischemia/reperfusion injury.

16.
Chinese Pharmacological Bulletin ; (12): 294-299, 2023.
Article in Chinese | WPRIM | ID: wpr-1013855

ABSTRACT

Aim To study the protective effect of trigonelline on H

17.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 516-526, 2023.
Article in English | WPRIM | ID: wpr-982721

ABSTRACT

Lignans derived from Eucommia ulmoides Oliver (Eucommia lignans) inhibit the progression of inflammatory diseases, while their effect on the progression of diabetic nephropathy (DN) remained unclear. This work was designed to assess the function of Eucommia lignans in DN. The major constituents of Eucommia lignans were analyzed by UPLC-Q-TOF-MS/MS. The binding between Eucommia lignans and aldose reductase (AR) was predicted by molecular docking. Eucommia lignans (200, 100, and 50 mg·kg-1) were used in model animals to evaluate their renal function changes. Rat glomerular mesangial cells (HBZY-1) were transfected with sh-AR, sh-AMPK, and oe-AR in the presence of high glucose (HG) or HG combined with Eucommia lignans to evaluate whether Eucommia lignans affected HG-induced cell injury and mitochondrial dysfunction through the AR/Nrf2/HO-1/AMPK axis. Eucommia lignans significantly attenuated the progression of DN in vivo. Eucommia lignans notably reversed HG-induced upregulation of inflammatory cytokines and mitochondrial injury, while downregulating the levels of Cyto c, caspase 9, AR, and NOX4 in HBZY-1 cells. In contrast, HG-induced downregulation of Nrf2, HO-1 and p-AMPKα levels were abolished by Eucommia lignans. Meanwhile, knockdown of AR exerted similar therapeutic effect of Eucommia lignans on DN progression, and AR overexpression reversed the effect of Eucommia lignans. Eucommia lignans alleviated renal injury through the AR/Nrf2/HO-1/AMPK axis. Thus, these findings might provide evidence for the use of Eucommia lignans in treating DN.


Subject(s)
Animals , Rats , AMP-Activated Protein Kinases/genetics , Diabetes Mellitus , Diabetic Nephropathies/prevention & control , Eucommiaceae/metabolism , Lignans/therapeutic use , Molecular Docking Simulation , NF-E2-Related Factor 2/metabolism , Tandem Mass Spectrometry
18.
Biomedical and Environmental Sciences ; (12): 1028-1044, 2023.
Article in English | WPRIM | ID: wpr-1007879

ABSTRACT

OBJECTIVE@#To explore whether the protein Deglycase protein 1 (DJ1) can ameliorate Alzheimer's disease (AD)-like pathology in Amyloid Precursor Protein/Presenilin 1 (APP/PS1) double transgenic mice and its possible mechanism to provide a theoretical basis for exploring the pathogenesis of AD.@*METHODS@#Adeno-associated viral vectors (AAV) of DJ1-overexpression or DJ1-knockdown were injected into the hippocampus of 7-month-old APP/PS1 mice to construct models of overexpression or knockdown. Mice were divided into the AD model control group (MC), AAV vector control group (NC), DJ1-overexpression group (DJ1 +), and DJ1-knockdown group (DJ1 -). After 21 days, the Morris water maze test, immunohistochemistry, immunofluorescence, and western blotting were used to evaluate the effects of DJ1 on mice.@*RESULTS@#DJ1 + overexpression decreased the latency and increased the number of platform traversals in the water maze test. DJ1 - cells were cured and atrophied, and the intercellular structure was relaxed; the number of age spots and the expression of AD-related proteins were significantly increased. DJ1 + increased the protein expression of Nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), light chain 3 (LC3), phosphorylated AMPK (p-AMPK), and B cell lymphoma-2 (BCL-2), as well as the antioxidant levels of total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), and Glutathione peroxidase (GSH-PX), while decreasing the levels of Kelch-like hydrates-associated protein 1 (Keap1), mammalian target of rapamycin (mTOR), p62/sequestosome1 (p62/SQSTM1), Caspase3, and malondialdehyde (MDA).@*CONCLUSION@#DJ1-overexpression can ameliorate learning, memory, and AD-like pathology in APP/PS1 mice, which may be related to the activation of the NRF2/HO-1 and AMPK/mTOR pathways by DJ1.


Subject(s)
Animals , Mice , Alzheimer Disease/therapy , AMP-Activated Protein Kinases/metabolism , Amyloid beta-Protein Precursor/metabolism , Antioxidants/metabolism , Disease Models, Animal , Hippocampus/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mammals/metabolism , Mice, Inbred C57BL , Mice, Transgenic , NF-E2-Related Factor 2/metabolism , Presenilin-1/metabolism , TOR Serine-Threonine Kinases/metabolism
19.
Chinese Journal of Blood Transfusion ; (12): 19-25, 2023.
Article in Chinese | WPRIM | ID: wpr-1004879

ABSTRACT

【Objective】 To investigate the protective effect and mechanism of platelet-rich plasma (PRP) on lipopolysaccharide (LPS) -induced inflammatory response in BV2 cells. 【Methods】 BV2 microglia were divided into normal control group, 10%PRP control group, LPS group (LPS induction), 3%PRP+ LPS group (LPS induction, 3%PRP pretreatment), 5%PRP+ LPS group (LPS induction, 5%PRP pretreatment), 10%PRP+ LPS group (LPS induction, 10%PRP pretreatment), and the proliferation of BV2 cells was measured by CCK-8. The mitochondrial membrane potential of BV2 cells was measured by confocal microscopy, ROS was measured by fluorescence method, and NO was measured by Griess method. The protein expressions of IL-6, TNF-α, BACH1, GPX4, NRF2 and HO-1 were detected by Western blot. In addition, BV2 microglia were treated with HO-1 inhibitor and divided into normal control group, LPS group, ZnPP+ LPS group, 10%PRP+ LPS group, ZnPP+ LPS+ 10%PRP group, and the protein expressions of HO-1, IL-6 and TNF-α were detected by Western blot. 【Results】 Compared with normal control group, PRP promoted the proliferation of BV2 cells (P<0.01). The mitochondrial membrane potential decreased, ROS production increased, the levels of NO, IL-6, TNF-α and BACH1 increased (P<0.01). However, the expression levels of GPX4, NRF2 and HO-1 decreased (P<0.01) in LPS group. Compared with LPS group, the proliferation activity and mitochondrial membrane potential of BV2 cells in 3%PRP+ LPS, 5%PRP+ LPS and 10%PRP+ LPS groups significantly increased. The levels of ROS, NO, IL-6, TNF-α and BACH1 significantly decreased (P<0.01). The expressions of GPX4, NRF2 and HO-1 in different concentrations of PRP (3%, 5% and 10%) increased (P<0.01). Moreover, the expression of IL-6 and TNF-α in ZnPP+ LPS group was significantly higher than that in LPS group after HO-1 inhibitor treatment. Compared with 10%PRP+ LPS+ ZnPP group, HO-1 inhibitor could reverse the effect of PRP on the expression of IL-6 and TNF-α in LPS-induced BV2 cells (P<0.01). 【Conclusion】 PRP inhibits the inflammatory response of BV2 microglia induced by LPS by activating the NRF2/HO-1 signaling pathway.

20.
China Journal of Chinese Materia Medica ; (24): 3839-3847, 2023.
Article in Chinese | WPRIM | ID: wpr-981516

ABSTRACT

The purpose of this study was to investigate the effect of notoginsenoside R_1(NGR_1) on alleviating kidney injury by regulating renal oxidative stress and the Nrf2/HO-1 signaling pathway in mice with IgA nephropathy(IgAN) and its mechanism. The mouse model of IgAN was established using a variety of techniques, including continuous bovine serum albumin(BSA) gavage, subcutaneous injections of carbon tetrachloride(CCl_4) castor oil, and tail vein injections of lipopolysaccharide(LPS). After successful modeling, mice with IgAN were randomly separated into a model group, low, medium, and high-dose NGR_1 groups, and a losartan group, and C57BL6 mice were utilized as normal controls. The model and normal groups were given phosphate buffered saline(PBS) by gavage, the NGR_1 groups were given varying dosages of NGR_1 by gavage, and the losartan group was given losartan by gavage for 4 weeks. The 24-hour urine of mice was collected after the last administration, and serum and kidney tissues of mice were taken at the end of the animal experiment. Then urine red blood cell count(URBCC), 24-hour urine protein(24 h protein), serum creatinine(Scr), and blood urea nitrogen(BUN) levels were measured. The enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of galactose-deficient IgA1(Gd-IgA1), kidney injury molecule 1(Kim-1), and neutropil gelatinase-associated lipocalin(NGAL) in the mouse serum. The assay kits were used to detect the levels of malondialdehyde(MDA) and superoxide dismutase(SOD), and immunofluorescence(IF) was used to detect the expression level of glutathione peroxidase 4(GPX4) in the mesangial region. Western blot was used to detect the protein expression of nuclear transcription factor E2 related factor 2(Nrf2)/heme oxygenase 1(HO-1) signaling pathway in the renal tissue. Hematoxylin-eosin(HE) staining was used to observe pathological alterations in the glomerulus of mice. The results revealed that, as compared with the model group, the serum Gd-IgA1 level, URBCC, 24 h protein level, renal damage markers(Kim-1 and NGAL) in the high-dose NGR_1 group decreased obviously and renal function indicators(BUN, Scr) improved significantly. The activity of SOD activity and expression level of GPX4 increased significantly in the high-dose NGR_1 group, whereas the expression level of MDA reduced and protein expression levels of Nrf2 and HO-1 increased. Simultaneously, HE staining of the renal tissue indicated that glomerular damage was greatly decreased in the high-dose NGR_1 group. In conclusion, this study has clarified that NGR_1 may alleviate the kidney injury of mice with IgAN by activating the Nrf2/HO-1 signaling pathway, improving antioxidant capacity, and reducing the level of renal oxidative stress.

SELECTION OF CITATIONS
SEARCH DETAIL