Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Electron. j. biotechnol ; 53: 87-94, Sep.2021. graf, ilus, tab
Article in English | LILACS | ID: biblio-1451559

ABSTRACT

BACKGROUND Diabetes is a metabolic disorder caused by defects in insulin production and activity. During disease progression, changes in lipid peroxidation cause structural modifications via production of free radicals. Fangchinoline is a well-known alkaloid present in Stephaniae tetrandrine S. Moore, which has demonstrated antioxidant, anticancer, and anti-inflammatory activities. RESULTS The present study analyzed the anti-diabetic and antioxidant effects of fangchinoline in male rats with streptozotocin-induced diabetes. Rats were divided into the following groups: normal control, diabetic, diabetic + fangchinoline 100 mg/kg, diabetic + fangchinoline 200 mg/kg and diabetic + glibencla mide 600 mg/kg. The treatment was administered orally for 45 consecutive days. Lipid peroxidation was substantially increased by >50% in the serum, as well as the liver, kidney, and heart tissues of diabetic rats. However, fangchinoline supplementation significantly reduced lipid peroxidation to near normal levels. Reactive oxygen species levels were substantially increased by >500% in the serum, as well as the liver, kidney, and heart tissues of diabetic rats. Fangchinoline supplementation reduced reactive oxygen species to near normal levels. Fangchinoline supplementation significantly improved superoxide dismutase, glutathione peroxidase, catalase, and reduced glutathione levels in diabetic rats. Total hexoses, sialic acid, hexosamines, and fucose were increased in diabetic rats, whereas fangchinoline supplementation significantly reduced these total hexoses, sialic acid, hexosamines, and fucose to near normal levels CONCLUSIONS Supplementation with fangchinoline led to significant attenuation of the levels of lipid peroxidation, ROS, and glycoprotein components such as total hexoses, hexosamines, sialic acid, and fucose, while improving antioxidant marker levels


Subject(s)
Animals , Male , Rats , Benzylisoquinolines/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Reactive Oxygen Species , Streptozocin
2.
Gac. méd. Méx ; 140(4): 437-447, jul.-ago. 2004. ilus
Article in Spanish | LILACS | ID: lil-632209

ABSTRACT

El propósito de este trabajo es dar a conocer las bases moleculares de la fisiopatología de la diabetes mellitus, con el fin de prevenir la enfermedad o mejorar el tratamiento. La diabetes mellitus es una enfermedad compleja, donde la hiperglucemia crónica provoca complicaciones en distintos órganos. En esta condición aumentan las especies reactivas de oxígeno como resultado de su autooxidacción, por lo que su metabolismo propicia la acumulación de metabolitos como la fructosa, el sorbitol y las triosas fosfato. Éstos últimos generan α-oxoaldehídos reactivos con alta capacidad de unirse a proteínas y generar estrés oxidativo. Además, hay aumento de la síntesis de diacilgliceroles a partir de las triosas fosfato, las cuales activan a la pro teína cinasa C. Por otra parte, la alteración de la proporción normal entre los nucleótidos de niacinamida reducidos con respecto a los oxidados conduce a una baja eficiencia de los sistemas antioxidantes. Finalmente, estas desregulaciones metabólicas causan alteración en la transducción de la señal, en la expresión anormal de genes, además de daño tisular, lo que propicia complicaciones en los pacientes con diabetes.


The knowledge of the molecular basis of diabetes mellitus physiopathology will allow improvements in treatment or prevention of the disease. Diabetes mellitus is a complex disease in which hyperglycemia leads to complications in several organs. In this condition, there is increase in reactive oxygen species (ROS) as a result of glucose autooxidation; its metabolism produces accumulation of metabolites such as fructose, sorbitol, and triose phosphate. The latter generates α oxoaldehydes with high capacity to produce protein glycation and oxidative stress. Moreover, there is an increase in synthesis of diacylglycerol from triose phosphate, which activates protein kinase C. On the other hand, alteration of normal ratio between reduced and oxidized niacinamide nucleotides leads to low efficiency of antioxidative systems. Finally, this metabolic dysregulation causes altered signal transduction, abnormal gene expression, and tissue damage, resulting in development of diabetic complications.


Subject(s)
Humans , Diabetes Mellitus/physiopathology , Hyperglycemia/physiopathology , Molecular Biology , Oxidative Stress/physiology
SELECTION OF CITATIONS
SEARCH DETAIL