Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 635
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 264-275, 2024.
Article in Chinese | WPRIM | ID: wpr-999184

ABSTRACT

Fibrosis, a tumor-like lesion between benign tissue and malignant tumor, mostly occurs in the liver, kidney, heart, lung, bone marrow and other organs and tissues. It can affect almost every organ and eventually induce multiple organ failure and cancers, seriously endangering human life. It will be of great importance to prevent cancer if the disease can be opportunely blocked in the fibrotic stage. The pathogenesis of fibrosis is still not completely clear. It is of great clinical significance to study the occurrence, development, and mechanism of fibrosis as well as to screen new therapeutic targets. Enhancer of zeste homolog 2 (EZH2) is mainly located in the nucleus and involved in the formation of the polycomb repressive complex 2. EZH2 is a methyltransferase which makes the lysine on position 27 of histone H3 (H3K27me3) undergo trimethyl modification induces gene silencing through classical or nonclassical actions, so as to inhibit or activate transcription. EZH2 plays a critical role in cell growth, proliferation, differentiation, and apoptosis, which is regulated by different targets and signaling pathways. EZH2 regulates the transformation of myofibroblasts and participates in the fibrosis of multiple organs. Recent studies have shown that EZH2 plays a role in fibrosis-related pathophysiological processes such as epithelial-mesenchymal transition, oxidative stress, and inflammation. EZH2 as the target of fibrosis, EZH2 inhibitors, and EZH2-related traditional Chinese medicine (TCM) formula and active compounds have gradually become hot research directions. EZH2 may be a powerful target for organ fibrosis. Exploring the structure, function, and distribution of EZH2, the role of EZH2 in fibrosis, the EZH2 inhibitors, and TCM formulas and active components targeting EZH2 has great meanings. This paper reviews the research progress in EZH2 and fibrosis, providing new ideas for the diagnosis, treatment, and drug development of fibrosis.

2.
Acta Pharmaceutica Sinica B ; (6): 712-728, 2024.
Article in English | WPRIM | ID: wpr-1011274

ABSTRACT

Coronary restenosis is an important cause of poor long-term prognosis in patients with coronary heart disease. Here, we show that lysine methyltransferase SMYD2 expression in the nucleus is significantly elevated in serum- and PDGF-BB-induced vascular smooth muscle cells (VSMCs), and in tissues of carotid artery injury-induced neointimal hyperplasia. Smyd2 overexpression in VSMCs (Smyd2-vTg) facilitates, but treatment with its specific inhibitor LLY-507 or SMYD2 knockdown significantly inhibits VSMC phenotypic switching and carotid artery injury-induced neointima formation in mice. Transcriptome sequencing revealed that SMYD2 knockdown represses the expression of serum response factor (SRF) target genes and that SRF overexpression largely reverses the inhibitory effect of SMYD2 knockdown on VSMC proliferation. HDAC3 directly interacts with and deacetylates SRF, which enhances SRF transcriptional activity in VSMCs. Moreover, SMYD2 promotes HDAC3 expression via tri-methylation of H3K36 at its promoter. RGFP966, a specific inhibitor of HDAC3, not only counteracts the pro-proliferation effect of SMYD2 overexpression on VSMCs, but also inhibits carotid artery injury-induced neointima formation in mice. HDAC3 partially abolishes the inhibitory effect of SMYD2 knockdown on VSMC proliferation in a deacetylase activity-dependent manner. Our results reveal that the SMYD2-HDAC3-SRF axis constitutes a novel and critical epigenetic mechanism that regulates VSMC phenotypic switching and neointimal hyperplasia.

3.
Acta cir. bras ; 39: e392324, 2024. tab, graf
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1556677

ABSTRACT

ABSTRACT Purpose: Patients have been severely suffered from cancer associated pain, and pancreatic cancer is the most severe form of cancer associated with pain. There are very few options available to manage it. The present report evaluated the effect of 5HT2A on pancreatic cancer associated pain. Methods: Pancreatic cancer was induced by injecting SW 1,990 cells (~3×106in a 20 μL suspension) into the pancreas and formed a 2-3-mm vesicle using an inoculator fitted with a 26-gauge needle in BALB/c-nu mice. Survival rate and body weight of the mice were observed. Pain behaviour testing was performed at the end of each week (third and fourth week) after surgery. Inflammatory mediators and HDAC 2 proteins were determined in the spinal tissue using quantitative real-time polymerase chain reaction. Results: There was improvement in the survival rate and body weight in 5HT2A antagonist treated group than pancreatic cancer group of mice. Moreover, 5HT2A antagonist ameliorated the alteration in pain behaviour of pancreatic cancer mice. mRNA expression of HDAC2 and level of inflammatory cytokines were reduced in the spinal tissue of 5HT 2A antagonist treated group than pancreatic cancer group of mice. Conclusions: Data revealed that 5HT2A antagonist ameliorates pain associated with pancreatic cancer mice by HDAC inhibition and inflammatory cytokines. The result of investigation supports that modulation of 5HT2A receptor could be used clinically to protects neuropathic pain in pancreatic cancer.

4.
Mem. Inst. Oswaldo Cruz ; 118: e230143, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1529018

ABSTRACT

BACKGROUND Tuberculosis (TB) is a major public health problem, which has been aggravated by the alarming growth of drug-resistant tuberculosis. Therefore, the development of a safer and more effective treatment is needed. OBJECTIVES The aim of this work was repositioning and evaluate histone deacetylases (HDAC) inhibitors- based drugs with potential antimycobacterial activity. METHODS Using an in silico pharmacological repositioning strategy, three molecules that bind to the catalytic site of histone deacetylase were selected. Pneumocytes type II and macrophages were infected with Mycobacterium tuberculosis and treated with pre-selected HDAC inhibitors (HDACi). Subsequently, the ability of each of these molecules to directly promote the elimination of M. tuberculosis was evaluated by colony-forming unit (CFU)/mL. We assessed the expression of antimicrobial peptides and respiratory burst using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) FINDINGS Aminoacetanilide (ACE), N-Boc-1,2-phenylenediamine (N-BOC), 1,3-Diphenylurea (DFU), reduce bacillary loads in macrophages and increase the production of β-defensin-2, LL-37, superoxide dismutase (SOD) 3 and inducible nitric oxide synthase (iNOS). While only the use of ACE in type II pneumocytes decreases the bacterial load through increasing LL-37 expression. Furthermore, the use of ACE and rifampicin inhibited the survival of intracellular multi-drug resistance M. tuberculosis. MAIN CONCLUSIONS Our data support the usefulness of in silico approaches for drug repositioning to provide a potential adjunctive therapy for TB.

5.
Braz. j. med. biol. res ; 56: e12854, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1520474

ABSTRACT

During the tumorigenic process, cancer cells may become overly dependent on the activity of backup cellular pathways for their survival, representing vulnerabilities that could be exploited as therapeutic targets. Certain molecular vulnerabilities manifest as a synthetic lethality relationship, and the identification and characterization of new synthetic lethal interactions may pave the way for the development of new therapeutic approaches for human cancer. Our goal was to investigate a possible synthetic lethal interaction between a member of the Chromodomain Helicase DNA binding proteins family (CHD4) and a member of the histone methyltransferases family (SETDB1) in the molecular context of a cell line (Hs578T) representing the triple negative breast cancer (TNBC), a subtype of breast cancer lacking validated molecular targets for treatment. Therefore, we employed the CRISPR-Cas9 gene editing tool to individually or simultaneously introduce indels in the genomic loci corresponding to the catalytic domains of SETDB1 and CHD4 in the Hs578T cell line. Our main findings included: a) introduction of indels in exon 22 of SETDB1 sensitized Hs578T to the action of the genotoxic chemotherapy doxorubicin; b) by sequentially introducing indels in exon 22 of SETDB1 and exon 23 of CHD4 and tracking the percentage of the remaining wild-type sequences in the mixed cell populations generated, we obtained evidence of the existence of a synthetic lethality interaction between these genes. Considering the lack of molecular targets in TNBC, our findings provided valuable insights for development of new therapeutic approaches not only for TNBC but also for other cancer types.

6.
Acta Pharmaceutica Sinica ; (12): 2375-2383, 2023.
Article in Chinese | WPRIM | ID: wpr-999113

ABSTRACT

Krüppel-like transcription factor 2 (KLF2) plays a key regulatory role in endothelial inflammation, thrombosis, angiogenesis and macrophage inflammation and polarization, and up-regulation of KLF2 expression has the potential to prevent and treatment atherosclerosis. In this study, trichostatin C (TSC) was obtained from the secondary metabolites of rice fermentation of Streptomyces sp. CPCC 203909 as a KLF2 up-regulator by using a high throughput screening model based on a KLF2 promoter luciferase reporter assay. TSC significantly inhibited the adhesion of tumor necrosis factor-α (TNFα) induced monocytes (THP-1) to human umbilical vein endothelial cells (HUVECs). Western blot results showed that TSC decreased TNFα induced the protein expression increase of vascular cell adhesion molecule-1 (VCAM-1), and thereby inhibited endothelial inflammation. The results of histone deacetylase (HDAC) overexpression and molecular docking experiments showed that TSC upregulated the expression of KLF2 by inhibiting subtypes of HDAC 4/5/7. In conclusion, this study suggests that TSC up-regulates the expression of KLF2 through inhibiting HDAC 4/5/7 and thus inhibits TNFα induced endothelial inflammation, and it has the potential to prevent and treat atherosclerosis.

7.
Acta Pharmaceutica Sinica ; (12): 2541-2550, 2023.
Article in Chinese | WPRIM | ID: wpr-999003

ABSTRACT

As an important component of nucleosomes on the chromatin of eukaryotic cells, histones play an important role in the development and progression of tumour diseases by regulating epigenetic post-translational modifications such as acetylation and methylation. In addition, development of inhibitors targeting methyltransferase and deacetylase provides novel therapeutic strategies for cancer treatment. Mass spectrometry-based proteomics can reveal the global changes of histone modifications under the action of drugs during disease progression, which in turn provides important support for revealing drug action mechanism, drug resistance mechanism, and investigating novel drug combination strategies. This article focuses on the progress and status of proteomic research on a variety of histone modifying enzyme inhibitors, including methyltransferase inhibitors and histone deacetylase inhibitors, which will help to understand the current and further utilization of proteomics in studying histone modifications.

8.
China Journal of Chinese Materia Medica ; (24): 2010-2019, 2023.
Article in Chinese | WPRIM | ID: wpr-981334

ABSTRACT

Chronic heart failure(CHF) has become a worldwide public health problem due to its high morbidity and mortality, which seriously endangers people's lifespan and quality of life. In recent years, the treatment strategy of CHF has shifted its emphasis on short-term improvement and transformation of hemodynamics to long-term repair as well as improvement of the biological properties of heart failure. At present, with the continuous deepening of medical research, it has been found that histone acetylation is closely related to the occurrence and development of CHF. Traditional Chinese medicine, via regulating histone acetylation, delays ventricular remodeling, improves energy metabolism, inhibits fibrosis and cardiomyocyte hypertrophy, and intervenes in the development process of heart failure, thus reducing the mortality and the readmission rate and ultimately improving long-term prognosis. Therefore, this study reviewed the mechanism of histone acetylation in the treatment of heart failure as well as its prevention and treatment with traditional Chinese medicine, to provide reference for clinical treatment of CHF.


Subject(s)
Humans , Medicine, Chinese Traditional , Histones/therapeutic use , Acetylation , Quality of Life , Heart Failure/prevention & control
9.
Biomedical and Environmental Sciences ; (12): 441-451, 2023.
Article in English | WPRIM | ID: wpr-981072

ABSTRACT

OBJECTIVE@#Here, we explored molecular changes that could potentially mediate healing effects of Gua Sha - a method employed by the Chinese traditional medicine with proven track records of safe and efficient applications dating back to ancient times as well as support from randomized controlled trials performed by modern medical studies - yet remaining almost entirely unexplored by the modern-day high-throughput methods of the -omics sciences.@*METHODS@#We investigated transcriptome changes occurring shortly after Gua Sha treatment in the whole blood of healthy volunteers using bulk RNA-seq analysis. We applied various analytical tools to identify genes with consistent expression changes in multiple individuals in response to Gua Sha and their networks.@*RESULTS@#We found that while the changes were very subtle and individual-specific, we could identify consistent upregulation of three histone genes. Further analysis of the potential regulatory networks of these histone genes revealed the enrichment of functions involved in the immune response and inflammation.@*CONCLUSION@#The significance of these results in the context of potential effects of Gua Sha and the next steps in exploring the molecular mechanisms of action of this technique are discussed.


Subject(s)
Humans , Medicine, Chinese Traditional/methods , Histones , Gene Expression
10.
China Pharmacy ; (12): 2471-2475, 2023.
Article in Chinese | WPRIM | ID: wpr-997004

ABSTRACT

ABSTRACT OBJECTIVE To investigate the effects and mechanism of ginsenoside Rh2 on the proliferation and apoptosis in human glioma U87 and U251 cells. METHODS Using human glioma U87 and U251 cells as subjects, the proliferation and apoptosis, as well as the expression of histone deacetylase 1(HDAC1) protein and apoptosis-related proteins [B cell lymphoma-2(Bcl-2), Bcl-2-associated X protein (Bax) and cleaved caspase-3] were detected after being treated with different concentrations of ginsenoside Rh2. RESULTS The concentrations of 10,20,30,40,50,60,70,80 μmol/L ginsenoside Rh2 could generally significantly increase the proliferation inhibition rate of U87 and U251 cells (P<0.05 or P<0.01), and the half inhibitory concentrations of this component after 48 hours of action were 51.34 and 55.84 μmol/L, respectively;30,50 μmol/L ginsenoside Rh2 could increase the total apoptotic rate of both types of cells, reduced the protein expressions of HDAC1 and Bcl-2, and increased the protein expressions of Bax and cleaved caspase-3 significantly (P<0.05 or P<0.01). CONCLUSIONS Ginsenoside Rh2 has a significant inhibitory effect on the proliferation of glioma cells and promotes the apoptosis of cells, which may be through reducing the expression of HDAC1 protein and activating the Bcl-2 family protein-mediated apoptosis pathway.

11.
Chinese Journal of Anesthesiology ; (12): 302-306, 2023.
Article in Chinese | WPRIM | ID: wpr-994189

ABSTRACT

Objective:To evaluate the effect of surgery under propofol anesthesia during mid-pregnancy on the cognitive function and hippocampal histone deacetylase 2 (HDAC2)-cAMP response element-binding protein (CREB)-N-methyl-D-aspartate (NMDA) receptor 2B subunit (NR2B)-containing NMDA receptor (NR2B) signaling pathway in the offspring rats.Methods:Thirty healthy Sprague-Dawley rats at 14 days of gestation were divided into 3 groups ( n=10 each) using a random number table method: propofol anesthesia group (P group), surgery under propofol anesthesia group (S group) and control group (C group). In S group, propofol 20 mg/kg was injected via the caudal vein, and then propofol was continuously infused at a rate of 20 mg·kg -1·h -1 to maintain anesthesia for 4 h, and exploratory laparotomy was performed. Group P received no exploratory laparotomy and the other treatments were similar to those previously described in group S. The equal volume of normal saline was given instead in group C. The learning and memory of the offspring rats was assessed using Morris water maze test on postnatal day 30. The expression of HDAC2, phosphorylated CREB (p-CREB), NR2B, brain-derived neurotriphic factor (BDNF) and phosphorylated tyrosine kinase B (p-TrkB) in offspring′s hippocampi was evaluated by Western blot. Apoptosis in hippocampal neurons was detected by TUNEL staining. Results:Compared with group C, the escape latency was significantly prolonged, the frequency of crossing the original platform was decreased, the time spent in the second quadrant was shortened, the expression of HDAC2 was up-regulated, the expression of p-CREB, NR2B, BDNF and p-TrkB was down-regulated, and the apoptosis rate of the hippocampal neurons was increased in P and S groups ( P<0.05). Compared with P group, the escape latency was significantly prolonged, the frequency of crossing the original platform was decreased, the time spent in the second quadrant was shortened, the expression of HDAC2 was up-regulated, the expression of p-CREB, NR2B, BDNF and p-TrkB was down-regulated, and the apoptosis rate of the hippocampal neurons was increased in S group ( P<0.05). Conclusions:Surgery under propofol anesthesia during mid-pregnancy can decrease the cognitive function of offspring rats, and the mechanism is related to the regulation of HDAC2-CREB-NR2B signaling pathway and the promotion of apoptosis in hippocampal neurons.

12.
Chinese Journal of Trauma ; (12): 659-664, 2023.
Article in Chinese | WPRIM | ID: wpr-992647

ABSTRACT

Traumatic brain injury (TBI) is a major reason for temporary or permanent dyskinesia and cognitive impairment of the organism. Generally, TBI induces subsequent neuroinflammation to assist cell debris removal and tissue repair and regeneration after injury. However, overactivation or long-term activation of immune cells will exacerbate nerve damage or death, cause cognitive dysfunction, and ultimately lead to neurodegenerative diseases. Therefore, secondary damage caused by persistent inflammation is a key component of TBI pathological process. As the main metabolite of anaerobic glycolysis, lactate is increased after TBI and participates in brain inflammation as an important immune regulatory molecule rather than a metabolic waste. Importantly, histone lysine lactylation as a novel type of histone post-translational modifications (HPTM) derived from lactate allows lactate to participate in the regulation of complex immunopathophysiological processes of the central nervous system after TBI. Further study on the process of histone lactylation and its immune regulation mechanism during TBI may provide new insights for early intervention and improvement of TBI prognosis. Thus, the authors reviewed the role of histone lactylation in the immune regulation of TBI, so as to further elucidate the mechanism of TBI and the explore new warning and prevention measures from the perspective of HPTM.

13.
Chinese Journal of Primary Medicine and Pharmacy ; (12): 87-96, 2023.
Article in Chinese | WPRIM | ID: wpr-991713

ABSTRACT

Objective:To investigate the relationship between histone deacetylase (HDAC) gene polymorphism and type 2 diabetes mellitus (T2DM) in Bai and Han populations in Dali of Yunnan province.Methods:A total of 148 patients with T2DM of Bai and Han nationalities who received treatment in Dali Bai Autonomous Prefecture People's Hospital from May 2019 to March 2021 were included in the T2DM group. An additional 100 healthy controls of Bai and Han nationalities who concurrently received physical examination in the same hospital from May 2019 to December 2020 were included in the normal control group. The susceptibility genes of T2DM were detected using the Taqman MGB probe method. The susceptibility gene loci were amplified using polymerase chain reaction. The whole sequence of susceptibility gene was sequenced.Results:There were no significant differences in the distribution frequencies of rs2530223 genotype, rs11741808 genotype, rs2547547 genotype, and rs1741981 genotype between Bai and Han populations (all P > 0.05). There was a significant difference in blood lipid level between four loci ( t = -1.06, -0.19, 0.39, -2.12, -2.04, 0.16, 1.47, < 0.01, -0.16, -3.17, -2.93, 0.69, -2.58, -2.33, all P < 0.05). There was a significant difference in homeostasis model assessment of insulin resistance between different states (all P < 0.05). The frequency distributions of each genotype and each allele did not differ significantly between healthy control people of Bai nationality and T2DM patients of Bai nationality and between healthy control people of Han nationality and T2DM patients of Han nationality (all P > 0.05). Logistic regression analysis showed that the polymorphism was not an independent risk factor for T2DM. Conclusion:The relationships between HDAC gene polymorphism and T2DM, obesity and dyslipidemia differ between Bai and Han populations.

14.
Journal of Pharmaceutical Analysis ; (6): 127-141, 2023.
Article in Chinese | WPRIM | ID: wpr-991130

ABSTRACT

The reversible and precise temporal and spatial regulation of histone lysine methyltransferases(KMTs)is essential for epigenome homeostasis.The dysregulation of KMTs is associated with tumor initiation,metastasis,chemoresistance,invasiveness,and the immune microenvironment.Therapeutically,their promising effects are being evaluated in diversified preclinical and clinical trials,demonstrating encouraging outcomes in multiple malignancies.In this review,we have updated recent understandings of KMTs'functions and the development of their targeted inhibitors.First,we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis,tumor suppression,and im-mune regulation.In addition,we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors.In summary,we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.

15.
Journal of Pharmaceutical Analysis ; (6): 24-38, 2023.
Article in Chinese | WPRIM | ID: wpr-991122

ABSTRACT

Uveal melanoma(UM)is the most frequent and life-threatening ocular malignancy in adults.Aberrant histone methylation contributes to the abnormal transcriptome during oncogenesis.However,a comprehensive understanding of histone methylation patterns and their therapeutic potential in UM remains enigmatic.Herein,using a systematic epi-drug screening and a high-throughput transcriptome profiling of histone methylation modifiers,we observed that disruptor of telomeric silencing-1-like(DOT1L),a methyltransferase of histone H3 lysine 79(H3K79),was activated in UM,especially in the high-risk group.Concordantly,a systematic epi-drug library screening revealed that DOT1 L inhibitors exhibited salient tumor-selective inhibitory effects on UM cells,both in vitro and in vivo.Combining Cleavage Under Targets and Tagmentation(CUT&Tag),RNA sequencing(RNA-seq),and bioinformatics analysis,we identified that DOT1 L facilitated H3K79 methylation of nicotinate phosphoribosyltransferase(NAPRT)and epigenetically activated its expression.Importantly,NAPRT served as an oncogenic accel-erator by enhancing nicotinamide adenine dinucleotide(NAD+)synthesis.Therapeutically,DOT1L inhi-bition epigenetically silenced NAPRT expression through the diminishment of dimethylation of H3K79(H3K79me2)in the NAPRT promoter,thereby inhibiting the malignant behaviors of UM.Conclusively,our findings delineated an integrated picture of the histone methylation landscape in UM and unveiled a novel DOT1L/NAPRT oncogenic mechanism that bridges transcriptional addiction and metabolic reprogramming.

16.
Chinese Journal of Experimental Ophthalmology ; (12): 939-943, 2023.
Article in Chinese | WPRIM | ID: wpr-990933

ABSTRACT

Myopia has become a serious public health problem, but its pathogenesis is still unclear, and effective interventions are relatively scarce.It is recognized that myopia is influenced by both genetic and environmental factors, in which epigenetics may play a key role.Epigenetics refers to the changes in gene expression and function that do not involve DNA sequence variation.Mainly including DNA methylation, non-coding RNA (microRNA, long non-coding RNA and circular RNA, etc.), histone modification and mRNA modification, epigenetic modifications interact to form a complex regulatory network in the pathophysiological process of myopia.By controlling the process of scleral matrix remodeling, eye cell proliferation and retinal development, the morphological characteristics of the eye are jointly regulated, ultimately affecting the onset and development of myopia.Epigenetics has provided new targets of myopia intervention and has become a hotspot in the field.In this paper, we reviewed the current findings of myopia epigenetics to provide a reference for related research.

17.
Chinese Pediatric Emergency Medicine ; (12): 203-207, 2023.
Article in Chinese | WPRIM | ID: wpr-990503

ABSTRACT

Objective:To investigate the effect of histone deacetylase inhibitor trichostatin A(TSA) on the lipopolysaccharide(LPS)-induced injury and apoptosis of human microvascular endothelial cell(HMEC).Methods:HMECs were used as research cells to establish LPS-induced septic cell model, which were divided into three groups according to different treatments: control group (150 μL of phosphate buffer), LPS group (150 μL of 5 μg/mL LPS), LPS+ TSA group (150 μL of 5 μg/mL LPS and 500 μg/L TSA). After cells of each group were cultured for 24 h and 48 h, the concentration of lactate dehydrogenase(LDH)in the culture supernatant was detected by enzyme-linked immunosorbent assay and the apoptosis rate of HMECs was detected by Annexin V-FTTC/PI staining, then comparison between different groups were made.Results:Compared with the control group, LDH concentration in LPS group increased significantly at 24 h[(4.67±1.27) ng/L vs. (11.57±0.83) ng/L ] and 48 h[(7.93±0.80) ng/L vs. (12.72±0.89) ng/L ]; Compared with LPS group, LDH concentration in LPS + TSA group decreased significantly at 24 h[(6.01±0.29) ng/L ] and 48 h[(5.96±0.27) ng/L ], and the differences were statistically significant ( P<0.05). Compared with the control group, the apoptosis rates of HMEC cells in LPS group were significantly higher at 24 h[(0.92±0.89)% vs. (1.66±0.09)% ] and 48 h[(1.09±0.14)% vs. (5.01±0.16)%]; Compared with LPS group, the apoptosis rate of HMEC cells in LPS + TSA group significantly decreased at 24 h[(1.36±0.01)% ] and 48 h[(4.19±0.23)% ], the differences were statistically significant ( P<0.05). Conclusion:TSA has the protective effect of reducing cell injury and apoptosis in sepsis.

18.
Journal of Leukemia & Lymphoma ; (12): 442-445, 2023.
Article in Chinese | WPRIM | ID: wpr-989005

ABSTRACT

The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase, which is widely studied in histone methylation modification. It can promote epigenetic gene silencing and mediate the occurrence of tumors through a variety of regulatory mechanisms. The gain-of-function and loss-of-function mutations of EZH2 have been confirmed in many cancers. At present, with the extensive attention paid to the regulatory role of EZH2 in epigenetic mechanism, the exact way in which EZH2 imbalance affects the pathogenesis of hematologic malignancies remains to be clarified. This article reviews the pathogenetic role of EZH2 in hematological tumors, and hope to find new targets for the prevention and treatment of hematological tumors.

19.
Chinese Pharmacological Bulletin ; (12): 9-13, 2023.
Article in Chinese | WPRIM | ID: wpr-1013871

ABSTRACT

Histone deacetylase 3 (HDAC3) plays an important role in chromatin remodeling, which in turn regulates gene transcription, so HDAC3 is involved in the pathophysiology of various diseases through epigenetic regulation. Organ ischemia-reperfusion injury (I R I) is a pathophysiological process that leads to the development of a variety of diseases such as delayed neuronal necrosis, irreversible shock, myocardial infarction, acute organ failure and organ transplant rejection. In this paper we review the pathophysiological function of HDAC3 and its role in the development of IRI in human parenchymal organs, and also explore the therapeutic value of HDAC3 in IRI.

20.
Chinese Pharmacological Bulletin ; (12): 1001-1007, 2023.
Article in Chinese | WPRIM | ID: wpr-1013774

ABSTRACT

The circadian clock is regulated at the molecular level by transcriptional-translational feedback loop of clock genes, which ensures that a variety of physiological processes have a-round 24 h circadian rhythms, including cell metabolism, cell proliferation, cell apoptosis and tumorigenesis, to maintain the homeostasis. Thus, the disturbance of circadian clock will disrupt homeostasis, causing various diseases, including neoplasm, metabolic syndrome, Parkinson's disease, COPD and cardiovascular diseases. Disturbance of circadian clock is closely related with tumorigenesis, and acts on various molecules and pathways leading to tumorigenesis, including oncogene and tumor suppressor gene, cell cycle, metabolic reprogramming, immune escape, endocrine disruption, alteration of gastrointestinal microbiome. This review focuses on changes in clock genes expression which disrupt cell cycle and may play a role in tumorigenesis, and epi-geneties, an important way to regulate gene expression, which can alter clock gene expression, thus playing an important role in the process of " the alternation of clock gene expression-disruption of cell cycle-tumorigenesis".

SELECTION OF CITATIONS
SEARCH DETAIL