Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Type of study
Year range
1.
Chinese Journal of Preventive Medicine ; (12): 638-644, 2019.
Article in Chinese | WPRIM | ID: wpr-805582

ABSTRACT

Intestinal microbes play an important role in human health. The development of various clinical diseases, such as obesity, diabetes and cardiovascular disease, is closely related to the imbalance of intestinal microflora. With the development of high-throughput sequencing technology, there has been a breakthrough in the understanding of intestinal microorganism. The interaction between intestinal epithelial cells and intestinal microbes has become one of the hotspots and difficulties of current research. Because of the constraints of ethical review and experimental cost, people are more interested in the development of interaction models between the intestinal microflora and the host cells. In this paper, interaction models between intestinal microflora and host cells, and its working principle and application prospect are reviewed, hoping to provide new techniques and new ideas for studying functions of intestinal microbes.

2.
Mem. Inst. Oswaldo Cruz ; 113(10): e180311, 2018. graf
Article in English | LILACS | ID: biblio-955107

ABSTRACT

BACKGROUND Scedosporium apiospermum is a ubiquitous, emerging and multidrug-resistant fungal pathogen with still rather unknown virulence mechanisms. OBJECTIVES/METHODS The cellular basis of the in vitro interaction between fungi and host cells/tissues is the determinant factor for the development of a successful in vivo infection. Herein, we evaluated the interaction of S. apiospermum conidia with lung epithelial (A549), lung fibroblast (MRC-5) and RAW 264.7 macrophages by light and scanning/transmission electron microscopy. FINDINGS After 4 h of fungi-host cell contact, the percentage of infected mammalian cells and the number of fungi per infected cell was measured by light microscopy, and the following association indexes were calculated for A549, MRC-5 and macrophage cells: 73.2 ± 25.9, 69.7 ± 22.5 and 59.7 ± 11.1, respectively. Both conidia and germinated conidia were regularly observed interacting with the evaluated cells, with a higher prevalence of non-germinated conidia. Interestingly, nests of germinated conidia were evidenced at the surface of lung cells by scanning electron microscopy. Some germination projections and hyphae were seen penetrating/evading the mammalian cells. Furthermore, internalised conidia were seen within vacuoles as visualised by transmission electron microscopy. MAIN CONCLUSIONS The present study contributes to a better understanding of S. apiospermum pathogenesis by demonstrating the first steps of the infection process of this opportunistic fungus.


Subject(s)
Humans , Scedosporium , Macrophages , Carcinoma, Non-Small-Cell Lung , Host Cell Factor C1
3.
Mem. Inst. Oswaldo Cruz ; 108(1): 110-112, Feb. 2013. ilus, graf
Article in English | LILACS | ID: lil-666053

ABSTRACT

Trichomonas vaginalis and Tritrichomonas foetus are parasitic protists of the human and bovine urogenital tracts, respectively. Several studies have described the cytotoxic effects of trichomonads on urogenital tract epithelial cells. However, little is known about the host cell response against trichomonads. The aim of this study was to determine whether T. foetus and T. vaginalis stimulated the release of the cytokine interleukin (IL)-10 from cultured bovine epithelial cells. To characterise the inflammatory response induced by these parasites, primary cultures of bovine oviduct epithelial cells were exposed to either T. vaginalis or T. foetus. Within 12 h after parasite challenge, supernatants were collected and cytokine production was analysed. Large amounts of IL-10 were detected in the supernatants of cultures that had been stimulated with T. foetus. Interestingly, T. vaginalis induced only a small increase in the release of IL-10 upon exposure to the same bovine cells. Thus, the inflammatory response of the host cell is species-specific. Only T. foetus and not T. vaginalis induced the release of IL-10 by bovine oviduct epithelial cells.


Subject(s)
Animals , Cattle , Epithelial Cells/parasitology , /biosynthesis , Trichomonas vaginalis/immunology , Tritrichomonas foetus/immunology , Cells, Cultured , Microscopy, Electron, Scanning , Trichomonas vaginalis/ultrastructure , Tritrichomonas foetus/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL