Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Peking University(Health Sciences) ; (6): 776-784, 2021.
Article in Chinese | WPRIM | ID: wpr-942252

ABSTRACT

OBJECTIVE@#To examine the morphology and biocompatibility of a native acellular porcine pericardium (APP) in vitro and to evaluate its barrier function and effects on osteogenesis when used in guided bone regeneration (GBR) in vivo.@*METHODS@#First, the morphology of APP (BonanGenⓇ) was detected using a scanning electron microscope (SEM). Next, for biocompatibility test, proliferation of human bone marrow mesenchymal stem cells (hBMSCs) were determined using cell counting kit-8 (CCK-8) after being seeded 1, 3 and 7 days. Meanwhile, the cells stained with phalloidine and 4, 6-diamidino-2-phenylindole (DAPI) were observed using a confocal laser scanning microscopy (CLSM) to view the morphology of cell adhesion and pattern of cell proliferation on day 5. A 3-Beagle dog model with 18 teeth extraction sockets was used for the further research in vivo. These sites were randomly treated by 3 patterns below: filled with Bio-OssⓇand coverd by APP membrane (APP group), filled with Bio-OssⓇand covered by Bio-GideⓇmembrane (BG group) and natural healing (blank group). Micro-CT and hematoxylin-eosin (HE) were performed after 4 and 12 weeks.@*RESULTS@#A bilayer and three-dimensional porous ultrastructure was identified for APP through SEM. In vitro, APP facilitated proliferation and adhesion of hBMSCs, especially after 7 days (P < 0.05). In vivo, for the analysis of the whole socket healing, no distinct difference of new bone ratio was found between all the three groups after 4 weeks (P>0.05), however significantly more new bone regeneration was detected in APP group and BG group in comparison to blank group after 12 weeks (P < 0.05). The radio of bone formation below the membrane was significantly higher in APP group and BG group than blank group after 4 and 12 weeks (P < 0.05), however, the difference between APP group and BG group was merely significant in 12 weeks (P < 0.05). Besides, less resorption of buccal crest after 4 weeks and 12 weeks was observed in APP group of a significant difference compared in blank group (P < 0.05). The resorption in BG group was slightly lower than blank group (P>0.05).@*CONCLUSION@#APP showed considerable biocompatibility and three-dimentional structure. Performing well as a barrier membrane in the dog alveolar ridge preservation model, APP significantly promoted bone regeneration below it and reduced buccal crest resorption. On the basis of this study, APP is a potential osteoconductive and osteoinductive biomaterial.


Subject(s)
Animals , Dogs , Humans , Biocompatible Materials , Bone Regeneration , Osteogenesis , Pericardium , Swine , Tooth Extraction , Tooth Socket
2.
Journal of Xi'an Jiaotong University(Medical Sciences) ; (6): 55-59, 2019.
Article in Chinese | WPRIM | ID: wpr-844068

ABSTRACT

Objective: To explore the effects of the microenvironment of rabbit bladder acellular matrix graft (BAMG) on proliferation, cell surface markers, and molecular protein level of human bone marrow mesenchymal stem cells (hBMSCs). Methods: We prepared BAMG immersion fluid medium and detected its effect on the proliferation of hBMSCs by MTT method. The expressions of CD44, CD45, CD73 and PDGFRβ were detected by flow cytometry. The expressions of PPAR, OCN and α-SMA were detected by RT-PCR, and the expression of OCT was detected by Western blot. Results: hBMSCs had good compatibility with BAMG. The MTT method showed that BAMG and BAMG immersion medium did not affect the proliferation capacity of hBMSCs. The surface of hBMSCs cells cultured with immersion fluid still expressed CD44, CD73 and PDGFRβ, but not CD45. RT-PCR showed that OCN, PPAR, and α-SMA were all expressed. Western blot test also showed the positive expression of OCT-4. Conclusion: hBMSCs can still keep their original biological characteristics in the microenvironment of rabbit BAMG. It can be the seed cells and combined substrate materials for urinary system tissue engineering.

SELECTION OF CITATIONS
SEARCH DETAIL