Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Chinese Pharmacological Bulletin ; (12): 62-69, 2024.
Article in Chinese | WPRIM | ID: wpr-1013591

ABSTRACT

Aim To study the effect of menthol on hypobaric hypoxia-induced pulmonary arterial hypertension and explore the underlying mechanism in mice. Methods 10 to 12 weeks old wild type (WT) mice and TRPM8 gene knockout (TRPM8

2.
International Eye Science ; (12): 515-521, 2024.
Article in Chinese | WPRIM | ID: wpr-1012813

ABSTRACT

AIM: To investigate the effects of hypobaric hypoxia in plateau on tear indexes and related anatomical structures in rabbits.METHODS: A total of 18 healthy New Zealand rabbits were selected and randomly divided into plateau group and control group, with 9 rabbits(18 eyes)in each group. The plateau group was housed in the Simulated Climate Cabin for Special Environment of Northwest of China, simulating hypobaric hypoxia at an altitude of 6 000 m. The control group was housed in a clean animal room with atmospheric pressure and oxygen. Changes in the tear meniscus height and non-invasive tear break-up time were detected by using RHCT-1 corneal topographer dry eye comprehensive analysis system, changes in tear secretion was measured by Schirmer Ⅰ test, before intervention and on the 3, 7 d, 2 and 4 wk. Meanwhile, the changes in tear composition before and after intervention in the plateau environment were analyzed using Raman Spectroscopy. The histopathological changes of the lower lid conjunctiva, cornea, lacrimal gland, and Hardarian gland were observed by hematoxylin-eosin(HE)staining after 4 wk of intervention, and the expression of mucin 5AC(MUC5AC)in conjunctiva was detected by immunohistochemistry.RESULTS: Compared with the control group, Schirmer Ⅰ test, tear meniscus height, first and average non-invasive tear break-up time in the plateau group decreased significantly since 3 d, and the difference was significant with the extension of observation time(P<0.05). The above indexes increased from 2 wk. After 4 wk of intervention, the protein and lipid content of the tear composition of rabbits in the plateau group increased, and the nucleic acid content decreased compared with the pre-intervention period. Compared with the control group, rabbits in the plateau group showed thickening of corneal stromal edema, an increase in the number of conjunctival cup cells, increase in the level of expression of MUC5AC, an increase in the level of expression of MUC5AC, an atrophy and flattening of cytoplasm in lacrimal epithelial cells, an enlargement of glandular lumen, and no obvious destructive changes in the Hardarian glands.CONCLUSION: Acute plateau environment can destroy the homeostasis of rabbit ocular surface, so that the tear secretion and the tear film stability decreases, but within a certain period of time, rabbits undergo compensation with the habituation to the hypobaric hypoxia environment, which can increase the tear secretion to a certain extent and restore the tear film stability.

3.
Neuroscience Bulletin ; (6): 35-49, 2024.
Article in English | WPRIM | ID: wpr-1010657

ABSTRACT

Acute hypobaric hypoxic brain damage is a potentially fatal high-altitude sickness. Autophagy plays a critical role in ischemic brain injury, but its role in hypobaric hypoxia (HH) remains unknown. Here we used an HH chamber to demonstrate that acute HH exposure impairs autophagic activity in both the early and late stages of the mouse brain, and is partially responsible for HH-induced oxidative stress, neuronal loss, and brain damage. The autophagic agonist rapamycin only promotes the initiation of autophagy. By proteome analysis, a screen showed that protein dynamin2 (DNM2) potentially regulates autophagic flux. Overexpression of DNM2 significantly increased the formation of autolysosomes, thus maintaining autophagic flux in combination with rapamycin. Furthermore, the enhancement of autophagic activity attenuated oxidative stress and neurological deficits after HH exposure. These results contribute to evidence supporting the conclusion that DNM2-mediated autophagic flux represents a new therapeutic target in HH-induced brain damage.


Subject(s)
Mice , Animals , Hypoxia , Oxidative Stress , Autophagy , Cognition , Sirolimus/therapeutic use
4.
Chinese journal of integrative medicine ; (12): 932-940, 2023.
Article in English | WPRIM | ID: wpr-1010301

ABSTRACT

OBJECTIVE@#To explore the protective effect of bloodletting acupuncture at twelve Jing-well points on hand (BAJP) on acute hypobaric hypoxia (AHH)-induced brain injury in rats and its possible mechanisms.@*METHODS@#Seventy-five Sprague Dawley rats were divided into 5 groups by a random number table (n=15), including control, model, BAJP, BAJP+3-methyladenine (3-MA), and bloodletting acupuncture at non-acupoint (BANA, tail tip blooding) groups. After 7-day pre-treatment, AHH models were established using hypobaric oxygen chambers. The levels of S100B, glial fibrillary acidic protein (GFAP), superoxide dismutase (SOD), and malondialdehyde (MDA) in serum were measured by enzyme-linked immunosorbent assay. Hematoxylin-eosin staining and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling method were used to assess hippocampal histopathology and apoptosis. Transmission electron microscopy assay was used to observe mitochondrial damage and autophagosomes in hippocampal tissues. Flow cytometry was used to detect mitochondrial membrane potential (MMP). The mitochondrial respiratory chain complexes I, III and IV activities and ATPase in hippocampal tissue were evaluated, respectively. Western blot analysis was used to detect the protein expressions of Beclin1, autophagy protein 5 (ATG5), microtubule-associated protein 1 light chain 3 beta (LC3B), phosphatase and tensin homolog induced kinase 1 (PINK1), and Parkin in hippocampal tissues. The mRNA expressions of Beclin1, ATG5 and LC3-II were analyzed by quantitative real-time polymerase chain reaction.@*RESULTS@#BAJP treatment reduced hippocampal tissue injury and inhibited hippocampal cell apoptosis in AHH rats. BAJP reduced oxidative stress by decreasing S100B, GFAP and MDA levels and increasing SOD level in the serum of AHH rats (P<0.05 or P<0.01). Then, BAJP increased MMP, the mitochondrial respiratory chain complexes I, III and IV activities, and the mitochondrial ATPase activity in AHH rats (all P<0.01). BAJP improved mitochondrial swelling and increased the autophagosome number in hippocampal tissue of AHH rats. Moreover, BAJP treatment increased the protein and mRNA expressions of Beclin1 and ATG5 and LC3-II/LC3-I ratio in AHH rats (all P<0.01) and activated the PINK1/Parkin pathway (P<0.01). Finally, 3-MA attenuated the therapeutic effect of BAJP on AHH rats (P<0.05 or P<0.01).@*CONCLUSION@#BAJP was an effective treatment for AHH-induced brain injury, and the mechanism might be through reducing hippocampal tissue injury via increasing the PINK1/Parkin pathway and enhancement of mitochondrial autophagy.

5.
Asian Journal of Andrology ; (6): 426-432, 2023.
Article in English | WPRIM | ID: wpr-981957

ABSTRACT

This study assessed the effects of a simulated high-altitude environment on the reproductive system of prepubertal male rats and the reversibility of these effects upon return to a normal environment. Three-week-old male Wistar rats were randomly allocated to 4 groups that were exposed to different conditions: a normal environment for 6 weeks and 12 weeks, respectively, hypobaric hypoxia for 6 weeks, and hypobaric hypoxia for 6 weeks followed by a normal environment for 6 weeks. Multiple pathophysiological parameters were evaluated at the histological, endocrine, and molecular levels. Hypobaric hypoxia exposure for 6 weeks during the prepubertal phase significantly altered physiological parameters, body functions, blood indices, and reproductive potential. Six weeks after returning to a normal environment, the damaged reproductive functions partially recovered due to compensatory mechanisms. However, several changes were not reversed after returning to a normal environment for 6 weeks, including disorders of body development and metabolism, increased red blood cells, increased fasting blood glucose, abnormal blood lipid metabolism, decreased testicular and epididymis weights, abnormal reproductive hormone levels, excessive apoptosis of reproductive cells, and decreased sperm concentration. In summary, a hypobaric hypoxic environment significantly impaired the reproductive function of prepubertal male rats, and a return to normal conditions during the postpubertal phase did not fully recover these impairments.


Subject(s)
Rats , Male , Animals , Rats, Wistar , Altitude , Semen/metabolism , Hypoxia/pathology , Genitalia, Male
6.
Chinese Journal of Biotechnology ; (12): 3594-3604, 2023.
Article in Chinese | WPRIM | ID: wpr-1007979

ABSTRACT

Acute mountain sickness (AMS) is a clinical syndrome of multi-system physiological disorder after acute exposure to low pressure and low oxygen at high altitude. Quantitative proteomics can systematically quantify and describe protein composition and dynamic changes. In recent years, quantitative proteomics has been widely used in the prevention, diagnosis, treatment and pathogenesis of many diseases. This review summarizes the progress of quantitative proteomics techniques and its application in the prevention, diagnosis, treatment of AMS and mechanisms of rapidly acclimatizing to plateau, in order to provide a reference for the pathogenesis, early intervention, clinical treatment and proteomic research of AMS.


Subject(s)
Humans , Altitude Sickness/prevention & control , Proteomics , Acute Disease , Oxygen/metabolism
7.
Chinese Pharmacological Bulletin ; (12): 1097-1104, 2023.
Article in Chinese | WPRIM | ID: wpr-1013900

ABSTRACT

Aim To study the protective effect of catechin on acute altitude injury in rats. Methods Rats were randomly divided into six groups: control group, altitude hypoxia model group, rhodiola capsule group, low -, middle-and high dose of catechin groups. After three days of preventive administration, animals were rushed to 4 010 m altitude. After five days of continuous administration, abdominal aortic blood of rats was collected for blood gas detection. Cardiac, brain and lung tissues were collected for HE staining to observe the pathological changes. MDA content, GSH content, NO content, SOD activity of myocardial, brain and lung tissues were detected, so were IL-6 and TNF-α content in serum. Results Compared with the control group, blood oxygen saturation of rats of altitud hypoxia model group was significantly reduced, while myocardial, brain and lung tissues were damaged to different degrees. MDA and NO content increased, while GSH content and SOD activity decreased. The serum inflammatory factors TNF-α and IL-6 levels were elevated significantly. After catechin treatment, blood oxygen saturation of hypoxia rats significantly increased (P < 0. 05). HE staining results showed that myocardial, brain and lung tissue injury was alleviated to some extent. MDA, NO, IL-6 and TNF-α content were down-regulated, while GSH content and SOD activity were up-regulated respectively. Conclusions Catechin can resist high altitude hypoxia and protect the main organs from hypoxia injury in rats acute exposed to altitude, which is related to alleviating oxidative stress and inflammation caused by acute hypoxia exposure.

8.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 486-496, 2023.
Article in Chinese | WPRIM | ID: wpr-986057

ABSTRACT

Objective: To investigate the protective effect and its possible mechanism of A-kinase anchored protein 1 (AKAP1) on the myocardial injury induced by highland hypobaric hypoxia. Methods: From January 2021 to May 2022, male C57BL/6 SPF grade mice were divided into wild type control (WT) group and highland hypobaric hypoxia (HH) group with 6 mice in each group. HH group simulated 6000 m altitude with low pressure oxygen chamber for 4 weeks to build the model. Primary myocardial cells of SD rats were divided into normoxia control group and hypoxia experimental group (n=3). Cell models were constructed in a three-gas hypoxia incubator with 1% oxygen concentration for 24 h. AKAP1 protein and mRNA expression in myocardial tissue and cells were detected by western blotting, immunohistochemistry and quantitative real-time polymerase chain reaction (qPCR). After myocardial point injection of the AKAP1 or the control adenovirus, the mice were divided into 3 groups (n=6) : WT group, highland hypobaric hypoxia overexpression control group (HH+Ad-Ctrl group) and highland hypobaric hypoxia overexpression experimental group (HH+Ad-AKAP1 group). The cardiac function of mice was detected by noninvasive M-type ultrasonic cardiomotive, myocardial fibrosis was detected by Masson and Sirius Red staining, and cardiomyocyte hypertrophy was detected by wheat germ agglutinin. After the expression of AKAP1 in primary cardiomyocytes was downregulated by siRNA and upregulated by adenovirus, the cells were divided into three groups (n=3) : normoxia control group, hypoxia interference control group (hypoxia+siCtrl group), hypoxia AKAP1 knockdown group (hypoxia+siAKAP1 group) ; normoxia control group, hypoxia overexpression control group (hypoxia+Ad-Ctrl group), hypoxia AKAP1 overexpression group (hypoxia+Ad-AKAP1 group). Apoptosis was detected by flow cytometry, AKAP1, apoptosis-related protein and mRNA expression levels were detected by western blotting and qPCR, mitochondrial membrane potential was detected by JC-1 staining, and mitochondrial reactive oxygen specie (ROS) level was detected by MitoSOX. Results: The expression of AKAP1 in cardiac muscle of HH group was lower than that in the WT group, and the expression of AKAP1 in hypoxia experimental group was lower than that in normoxia control group (P<0.01). Compared with WT group, the left ventricular ejection fraction and fraction shortening of left ventricle in HH+Ad-Ctrl group were decreased (P<0.01), myocardial fibrosis and hypertrophy were aggravated (P<0.01), and the expression of B-cell lymphoma-2 (BCL-2) was decreased, the expressions of BCL-2-associated X protein (BAX), Caspase 3 and Caspase 9 were increased (P<0.01). After AKAP1 overexpression, compared with HH+Ad-Ctrl group, the left ventricular ejection fraction and left ventricular fraction shortening were increased in HH+Ad-AKAP1 group (P<0.01), myocardial fibrosis and hypertrophy were reduced (P<0.01), and the expression of BCL-2 was increased, the expressions of BAX, Caspase 3 and Caspase 9 were decreased (P<0.01). Compared with normoxia control group, the expression of BCL-2 in hypoxia+siCtrl group was decreased, the expressions of BAX, Caspase 3, Caspase 9 were increased, the apoptosis level was increased (P<0.01), the mitochondrial membrane potential was decreased and the production of ROS was increased (P<0.01). After AKAP1 knockdown, compared with hypoxia+siCtrl group, the expression of BCL-2 in hypoxia+siAKAP1 group was decreased, the expressions of BAX, Caspase 3, Caspase 9 were increased, the apoptosis level was increased (P<0.01), mitochondrial membrane potential was decreased, and the production of ROS was increased (P<0.01). After AKAP1 overexpression, compared with hypoxia+Ad-Ctrl group, the expression of BCL-2 in hypoxia+Ad-AKAP1 group was increased, the expressions of BAX, Caspase 3 and Caspase 9 were decreased (P<0.05), the apoptosis level was decreased (P<0.01), and the mitochondrial membrane potential was enhanced, and the production of ROS was decreased (P<0.01) . Conclusion: The downregulation of AKAP1 in cardiomyocytes under highland hypobaric hypoxia may lead to the decrease of mitochondrial membrane potential and the increase of ROS generation, leading to the apoptosis of cardiomyocytes, and thus aggravating the myocardial injury at highland hypobaric hypoxia.

9.
Chinese journal of integrative medicine ; (12): 170-178, 2023.
Article in English | WPRIM | ID: wpr-971338

ABSTRACT

OBJECTIVE@#To explore the protective effect and possible mechanisms of bloodletting acupuncture at Jing-well points (BAJP) pre-treatment on acute hypobaric hypoxia (AHH)-induced myocardium injury rat.@*METHODS@#Seventy-five rats were randomly divided into 5 groups by a random number table: a control group (n=15), a model group (n=15), a BAJP group (n=15), a BAJP+3-methyladenine (3-MA) group (n=15), and a BANA (bloodletting at nonacupoint; tail bleeding, n=15) group. Except for the control group, the AHH rat model was established in the other groups, and the corresponding treatment methods were adopted. Enzyme-linked immunosorbent assay (ELISA) was used to detect creatine kinase isoenzyme MB (CK-MB) and cardiac troponins I (CTnI) levels in serum and superoxide dismutase (SOD) and malondialdehyde (MDA) levels in myocardial tissue. Hematoxylin-eosin (HE) staining was used to observe myocardial injury, and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining was used to observe cell apoptosis. Transmission electron microscopy detection was used to observe mitochondrial damage and autophagosomes in the myocardium. The mitochondrial membrane potential of the myocardium was analyzed with the fluorescent dye JC-1. Mitochondrial respiratory chain complex (complex I, III, and IV) activities and ATPase in the myocardium were detected by mitochondrial respiratory chain complex assay kits. Western blot analysis was used to detect the autophagy index and hypoxia inducible factor-1α (HIF-1α)/Bcl-2 and adenovirus E1B 19k Da-interacting protein 3 (BNIP3) signaling.@*RESULTS@#BAJP reduced myocardial injury and inhibited myocardial cell apoptosis in AHH rats. BAJP pretreatment decreased MDA levels and increased SOD levels in AHH rats (all P<0.01). Moreover, BAJP pretreatment increased the mitochondrial membrane potential (P<0.01), mitochondrial respiratory chain complex (complexes I, III, and IV) activities (P<0.01), and mitochondrial ATPase activity in AHH rats (P<0.05). The results from electron microscopy demonstrated that BAJP pretreatment improved mitochondrial swelling and increased the autophagosome number in the myocardium of AHH rats. In addition, BAJP pretreatment activated the HIF-1α/BNIP3 pathway and autophagy. Finally, the results of using 3-MA to inhibit autophagy in BAJP-treated AHH rats showed that suppression of autophagy attenuated the treatment effects of BAJP in AHH rats, further proving that autophagy constitutes a potential target for BAJP treatment of AHH.@*CONCLUSION@#BAJP is an effective treatment for AHH-induced myocardial injury, and the mechanism might involve increasing HIF-1α/BNIP3 signaling-mediated autophagy and decreasing oxidative stress.


Subject(s)
Animals , Rats , Acupuncture Therapy , Altitude , Apoptosis , Autophagy , Bloodletting , Hypoxia/metabolism , Membrane Proteins/pharmacology , Mitochondrial Proteins/pharmacology , Oxidative Stress , Rats, Sprague-Dawley
10.
Neumol. pediátr. (En línea) ; 18(2): 37-39, 2023. ilus, tab
Article in Spanish | LILACS | ID: biblio-1444103

ABSTRACT

En las alturas, sobre todo a 2500 metros sobre el nivel del mar, la cantidad absoluta de oxígeno va decreciendo y por lo tanto la cantidad disponible para el intercambio gaseoso disminuye, produciéndose una vasoconstricción hipóxica pulmonar (VHP). La VHP asociada a la hipoxia hipobárica de la altura produce un aumento de la presión pulmonar que es mayor en los lactantes y a mayores alturas. No hay valores únicos de saturación de oxígeno (SatO2) en la altura, porque ésta va disminuyendo según el mayor nivel de altura, aumenta con la edad, y la brecha entre la vigilia y sueño es grande (sobre todo en los primeros meses de vida). El 25% de los niños sanos que viven en altura tienen valores de SatO2 significativamente menores que el 75% restante. Los valores normales de los índices de apnea/hipopnea son distintos a los de nivel del mar. El edema pulmonar de las alturas es una patología frecuente, que se produce por un incremento desproporcionado en la VHP reflejando una hiperactividad del lecho vascular pulmonar ante la exposición aguda a la hipoxia hipobárica. Tiene cuatro fenotipos, es infrecuente en menores de 5 años y rara vez es mortal, la sospecha clínica y el manejo oportuno con oxigeno es la clave. Finalmente, en la altura los valores normales de la función pulmonar de la espirometría, oscilometría de impulso y capacidad de difusión son distintos que a nivel del mar.


At high altitude, especially > 2,500 meters above sea level, the absolute amount of oxygen decreases and therefore the amount available for gas exchange decreases, producing hypoxic pulmonary vasoconstriction (VHP). VHP associated with high-altitude hypobaric hypoxia produces an increase in pulmonary pressure that is greater in infants and at higher altitudes. There are no single values of oxygen saturation (SatO2) at altitude, because it decreases with the highest level of altitude, increases with age, and the gap between wakefulness and sleep is large (especially in the first months of life). Around 25% of healthy children living at altitude have SatO2 values significantly lower than the remaining 75%. The normal values of the apnea/hypopnea indices are different from those at sea level. High altitude pulmonary edema is a frequent pathology that is produced by a disproportionate increase in VHP reflecting hyperactivity of the pulmonary vascular bed in the face of acute exposure to hypobaric hypoxia, it has four phenotypes, it is uncommon in children under 5 years of age, and it is rarely fatal, the clinical suspicion and timely management with oxygen is the key. Finally, at high altitude, the normal values of lung function from spirometry, impulse oscillometry, and diffusing capacity are different from those at sea level.


Subject(s)
Humans , Child , Adolescent , Pulmonary Edema/physiopathology , Altitude , Altitude Sickness/physiopathology , Respiratory Function Tests , Oxygen Saturation , Hypoxia/physiopathology
11.
J. health med. sci. (Print) ; 8(1): 15-20, ene.-mar. 2022. tab
Article in English | LILACS | ID: biblio-1391822

ABSTRACT

The Chilean workforce has over 200,000 people that are intermittently exposed to altitudes over 4000 m. In 2012, the Ministry of Health provided a technical guide for high altitude workers that included a series of actions to mitigate the effects of hypoxia. Previous studies have shown the positive effect of oxygen enrichment at high altitudes. The Atacama Large Millimeter / submillimeter Arrays (ALMA) radiotelescope operate at 5,050 m (Array Operation Site, AOS) and is the only place in the world where Pressure Swing Adsorption (PSA) and Liquid Oxygen technologies have been installed at a large scale. Here we discuss our experience using oxygen supplementation at ALMA, to prevent the malaise and/or risks associated with exposure at 5,050 m. Antenna operators experienced chronic intermittent hypobaric hypoxia (CIHH, shiftwork 8 days HA*6 days rest SL) over 4 years. Studies to define normal O2 saturation values were performed in OSF and AOS by continuous recording during the shift. The outcomes showed no differences between production procedures (PSA or Liquid oxygen) in regulating oxygen availability at AOS facilities. As a result, big-scale installations have difficulties reaching the appropriate oxygen concentration due to leaks in high mobility areas. In addition, the PSA plant requires adequation and maintenance to operate at a very high altitude.


La fuerza laboral chilena cuenta con más de 200.000 personas que están expuestas intermitentemente a altitudes superiores a los 4000 m. En 2012, el Ministerio de Salud entregó una guía técnica para trabajadores de altura que incluía una serie de acciones para mitigar los efectos de la hipoxia. Estudios anteriores han demostrado el efecto positivo del enriquecimiento de oxígeno en altitudes elevadas. El radiotelescopio Atacama Large Millimeter/submillimeter Arrays (ALMA) opera a 5.050 m (Array Operation Site, AOS) y es el único lugar en el mundo donde se han instalado tecnologías de adsorción por cambio de presión (PSA) y oxígeno líquido a gran escala. Aquí discutimos nuestra experiencia usando suplementos de oxígeno en ALMA, para prevenir el malestar y/o los riesgos asociados con la exposición a 5.050 m. Los operadores de antena experimentaron hipoxia hipobárica intermitente crónica (CIHH, trabajo por turnos 8 días HA*6 días descanso SL) durante 4 años. Se realizaron estudios para definir valores normales de saturación de O2 en OSF y AOS mediante registro continuo durante el turno. Los resultados no mostraron diferencias entre los procedimientos de producción (PSA u oxígeno líquido) en la regulación de la disponibilidad de oxígeno en las instalaciones de AOS. Como resultado, las instalaciones a gran escala tienen dificultades para alcanzar la concentración de oxígeno adecuada debido a fugas en áreas de alta movilidad. Además, la planta de PSA requiere de adecuación y mantenimiento para operar a gran altura.


Subject(s)
Humans , Oxygen/administration & dosage , Hypoxia/physiopathology , Blood Pressure/physiology , Models, Molecular , Desert , Absorption , Altitude , Telescopes
12.
Chinese Journal of Radiological Medicine and Protection ; (12): 487-492, 2022.
Article in Chinese | WPRIM | ID: wpr-956812

ABSTRACT

Objective:To observe the changes in hippocampus (CA1) and study the effect of chronic intermittent hypobaric hypoxia (CIHH) preconditioning on the memory and cognitive function of mice exposed to the whole brain irradiation.Methods:A total of 48 C57BL/6 male mice were randomly divided into control group, CIHH group, irradiation group (IR group) and CIHH+ IR group. For IR group, the whole brain of mice were irradiated with 10 Gy of 6 MV X-rays in a single fraction. Pretreatment with CIHH was performed by placing mice in a hypobaric chamber before radiation. The mirrors water maze experiment was performed in the four groups to observe the escape latency, the number of crossing platforms and the target quadrant residence time. Nissl staining was used to observe the changes of neuronal cells in hippocampal CA1 region. Immunofluorescence was used to detect the expression of microtubule-associated protein cells (DCX) in the subgranular zone (SGZ) of hippocampal dentate gyrus (DG) to evaluate neurogenesis.Results:After 30 days of whole brain irradiation, the escape latency of mice prolonged gradually, the frequency of crossing platform decreased ( P< 0.001), and the exploration time in the target quadrant decreased ( P<0.001). X-ray irradiation caused disorder of mice neuronal cells, degeneration and necrosis of neuronal cells, and decrease of DCX expression in CA1 region of mice. Compared with IR group, the CIHH+ IR group had shortened the escape latency, increased the frequency of crossing platform [(2.08±0.26) vs. (0.83±0.24), P<0.001], and also increased the exploration time in the target quadrant [(14.12±0.82)s vs. (7.42±0.73)s, P<0.001]. Pretreatment with CIHH also alleviated the deformation and necrosis of neurons in hippocampus, and increased DCX expression in CA1 region. Conclusions:Pretreatment of mice with CIHH plays a protective role in radiation induced hippocampal injury.

13.
Journal of Zhejiang University. Medical sciences ; (6): 575-581, 2021.
Article in English | WPRIM | ID: wpr-922253

ABSTRACT

: To investigate the protective effect of 7-hydroxyethyl chrysin (7-HEC) on rats with exercise-induced fatigue in hypobaric hypoxic condition.Forty healthy male Wistar rats were randomly divided into four groups with 10 rats in each group: control group, model group, chrysin group and 7-HEC group. The rats in control group were raised at local altitude but other three groups were raised in a simulating altitude of for hypobaric hypoxia treatment. The chrysin group and 7-HEC group were given chrysin or 7-HEC by gavage for respectively; while the control group and model group were given the same amount of sterilized water. The weight-bearing swimming tests were performed 3 d later, and the weight-bearing swimming time was documented. After rats were sacrificed, the liver and skeletal muscle tissue samples were taken for pathological examination and determination of lactate, malondialdehyde (MDA), total superoxide dismutase (T-SOD) and glycogen levels. Blood urea nitrogen was also determined. Compared with the model group, weight-bearing swimming times were significantly prolonged in 7-HEC group [ vs. (4.04±1.30) min, <0.01]; pathological changes in liver and skeletal muscle tissue were attenuated; generation rate of blood urea nitrogen vs. 0.60) mmol·L·min, <0.05], lactate [liver: (0.14±0.05) vs. (0.10±0.03) mg·g·min, skeletal muscle: vs. (0.18±] and MDA [liver: (0.48) vs. (0.78±0.28) nmol·mg·min, skeletal muscle: (0.87±0.19) vs. (0.63±0.11) nmol·mg·min] were significantly reduced (all < 0.05); glycogen content [liver: (15.16±2.69) vs. skeletal muscle: (1.46±0.49) vs.0.48) mg/g] and T-SOD [liver: (1.87±0.01) vs. (2.68±0.12) U/mL, skeletal muscle: 0.42) vs. 0.96) U/mL] were significantly improved (all <0.05). 7-HEC has significant protective effect on the rats with exercise-induced fatigue in hypobaric hypoxia condition.


Subject(s)
Animals , Male , Rats , Altitude , Fatigue/prevention & control , Flavonoids , Hypoxia , Rats, Wistar
14.
Journal of Zhejiang University. Medical sciences ; (6): 614-620, 2021.
Article in English | WPRIM | ID: wpr-922252

ABSTRACT

To construct a hypobaric hypoxia-induced cell injury model. Rat pheochromocytoma PC12 cells were randomly divided into control group, normobaric hypoxia group and hypobaric hypoxia group. The cells in control group were cultured at normal condition, while cells in other two groups were cultured in normobaric hypoxia and hypobaric hypoxia conditions, respectively. CCK-8 method was used to detect cell viability to determine the optimal modeling conditions like the oxygen concentration, atmospheric pressure and low-pressure hypoxia time. The contents of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and malondialdehyde (MDA) were detected by microplate method. The apoptosis ratio and cell cycle were analyzed by flow cytometry. The hypobaric hypoxia-induced cell injury model can be established by culturing for 24 h at 1% oxygen concentration and 41 kPa atmospheric pressure. Compared with the control group and normobaric hypoxia group, the activity of LDH and the content of MDA in hypobaric hypoxia group were significantly increased, the activity of SOD was decreased, the percentage of apoptosis was increased (all <0.05), and the cell cycle was arrested in G0/G1 phase. A stable and reliable cell injury model induced by hypobaric hypoxia has been established with PC12 cells, which provides a suitable cell model for the experimental study on nerve injury induced by hypoxia at high altitude.


Subject(s)
Animals , Rats , Cell Hypoxia , Hypoxia , Malondialdehyde , PC12 Cells , Superoxide Dismutase/metabolism
15.
Acta Pharmaceutica Sinica ; (12): 2260-2265, 2021.
Article in Chinese | WPRIM | ID: wpr-887042

ABSTRACT

In order to clarify the influence of acute hypobaric hypoxia on the bile acids of the rat small intestine, we used ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to identify bile acids in the contents of the small intestine from untreated and acute hypobaric hypoxia-treated rats. Thirty-nine bile acids were detected; PCA and OPLS-DA analysis revealed marked differences in the composition of bile acids between the untreated and the acute hypobaric hypoxia groups. Bile acids were screened with VIP > 1, |log2FC| ≥ 1, P < 0.05, and a total of 7 bile acids with significant differences in content between the two groups were obtained, including 5 conjugated bile acids, 2 unconjugated bile acids; in addition, the content of conjugated bile acids has risen in the treated group. This study demonstrated the influence of high-altitude hypoxic environment on bile acid composition and metabolism in rats. All the animal experiments in this study were approved by the 940th Hospital Ethics Committee (approval No: 2020KYLL012).

16.
Rev. Investig. Innov. Cienc. Salud ; 3(1): 98-115, 2021. tab, ilus
Article in Spanish | LILACS, COLNAL | ID: biblio-1393218

ABSTRACT

Introducción: en la actualidad, los entrenadores buscan la manera de mejorar las capacidades físicas de los atletas mediante diferentes estrategias de entrenamiento, como la exposición constante o intermitente a la altitud y el entrenamiento de intervalos de alta intensidad. Objetivo: Revisar la literatura actual y describir los efectos sobre el organismo del entrenamiento de intervalos de alta intensidad en altitud simulada en sujetos sedentarios, físicamente activos y entrenados. Resultados: el número de artículos revisados evidencia que, en hipoxia simulada en cámara hipobárica o normobárica (n=13) o máscara de simulación de altitud (n=1), todos utilizaron intensidades altas (n=13) a submáximas (n=1). Los participantes de las investigaciones fueron mujeres con obesidad sedentarias (n=3), hombres y mujeres físicamente activos (n=9) y sujetos entrenados (n=3). El tiempo de intervención de los estudios fue de 3 a 12 semanas, con una altitud simulada de 1824 a 4500 m.s.n.m. Se observaron efectos beneficiosos sobre la composición corporal, aptitud cardiorrespiratoria, aumentos en hemoglobina, eritropoyetina, consumo energético, fuerza máxima concéntrica e isométrica, fuerza absoluta y mejor tolerancia al ejercicio (percepción del esfuerzo). Conclusiones: La combinación de entrenamientos de intervalos de alta intensidad, combinado con una exposición en altitud simulada, puede evidenciar mejoras significativas en el rendimiento cardiorrespiratorio, así como en aspectos de composición corporal, lo que permitiría una mejor predisposición a intensidades más elevadas de actividad y ejercicio físico.


Introduction: Today, coaches are looking for ways to improve athletes' physical abilities through different training strategies, such as constant or intermittent exposu-re to altitude and high intensity interval training. Objective: To review the current literature and describe the effects on the body of simulated high-intensity interval training at altitude in sedentary, physically active, and trained subjects. Results: the number of articles reviewed evidences that, in simulated hypoxia in hypobaric or normobaric chamber (n = 13) or altitude simulation mask (n = 1), all used high intensities (n = 13) to submaximal (n = 1). The research participants were women with sedentary obesity (n = 3), physically active men and women (n = 9), and trained subjects (n = 3). The intervention time of the studies was 3 to 12 weeks, with a simulated altitude of 1824 to 4500 meters. Beneficial effects on body composition were observed, as well as cardiorespiratory fitness, increases in hemoglobin, erythro-poietin, energy consumption, concentric and isometric maximum strength, absolute strength and better exercise tolerance (perception of effort). Conclusions: The combination of high intensity interval training combined with a simulated altitude exposure can show significant improvements in cardiorespiratory performance, as well as in aspects of body composition, which would allow a better predisposition to higher intensities of activity and physical exercise.


Subject(s)
Breathing Exercises , Exercise/physiology , Simulation Exercise , High-Intensity Interval Training , Teaching , Body Composition , Erythropoietin , Health Strategies , Exercise Tolerance , Energy Consumption , Cool-Down Exercise , Cardiorespiratory Fitness , Hypoxia
17.
J. health med. sci. (Print) ; 6(2): 87-95, abr.-jun. 2020. ilus
Article in Spanish | LILACS | ID: biblio-1390989

ABSTRACT

Se describen las respuestas fisiológicas que el ser humano desarrolla en respuesta a la exposición a la altitud geográfica. Se describen no sólo las alteraciones debidas a una mala coordinación de los ajustes fisiológicos desencadenados durante la aclimatación a la altura sino también sus manifestaciones clínicas más relevantes. Se detallan los mecanismos moleculares subyacentes a tales respuestas y cómo su mejor conocimiento puede permitir aplicar la exposición intermitente a hipoxia como una herramienta útil para la resolución o alivio de determinadas alteraciones y patologías.


We depict the physiological responses developed by the human body in response to the exposure to geographic altitude. The main alterations due to a noncoordinated setup of the physiological adjustments triggered during the acclimatization at altitude are also described, as its most relevant clinical manifestations. The molecular mechanisms underlying such responses are detailed, and how a better knowledge of these processes can allow us to apply intermittent exposure to hypoxia programs as a useful tool for the resolution or relief of certain disorders and pathologies.


Subject(s)
Humans , Adaptation, Physiological , Altitude , Altitude Sickness , Brain Edema , Acclimatization , Hypoxia
18.
Chinese Pharmacological Bulletin ; (12): 215-220, 2020.
Article in Chinese | WPRIM | ID: wpr-857019

ABSTRACT

Aim To investigate the effect of chronic intermittent hypobaric hypoxia (CIHH) on relaxation of thoracic aorta rings in male developing rats and the underlying mechanisms. Methods Male neonatal Spra-gue-Dawlay ( SD) rats were randomly divided into eight groups respectively: CIHH treatment group (CIHH), group of one-week post-CIHH (CIHH-pl), group of two-week post-CIHH ( CIHH-p2 ) , group of three-week post-CIHH (CIHH-p3 ) , control group for CIHH (Con), control group for CIHH-pl (Con-1), control group for CIHH-p2 ( Con-2) and control group for CIHH-p3 (Con-3 ). Rats in CIHH groups were put into a hypobaric chamber with the mother rats 1 ~ 3 days before the birth to get a hypobaric hypoxia exposure mimicking 3 km altitude for 42 days, 5 hours daily. Rats in control groups were kept in the same environment as CIHH rats except hypoxia exposure. After anaesthetized with pentobarbital sodium (50 mg • kg-1 i. p. ), the thorax of rats was opened and thoracic aorta rings were made. The artery rings were placed in the bath chamber filled with K-H solution, and the relaxation of artery rings was recorded under normoxia or a-cute hypoxia conditions, respectively. Results (1) Under normoxia condition, the acetylcholine ( ACh)-induced relaxation of thoracic aorta increased obviously in CIHH groups compared with corresponding Con groups ( P < 0. 05 ). ( 2 ) The enhancing effect of CIHH treatment on thoracic aorta could be maintained for at least three weeks (P < 0. 05). (3 ) Under acute hypoxia condition, ACh-induced relaxation of thoracic aorta in each group decreased obviously, but the decrease in CIHH groups was significant less than that in Con groups ( P < 0.05 ). (4) The enhancement of CIHH on relaxation of thoracic aorta could be reversed by indomethacin (Indo), a cyclooxygenase inhibitor, glibenclamide (Gli), a KATP blocker, and Tempo, a free radical scavenger. Conclusions CIHH augments endothelium-dependent relaxation in thoracic aorta of developing rats. Also, CIHH can antagonize the inhibition of acute hypoxia on relaxation of thoracic aorta. The enhancing effect of CIHH treatment may be related with the increase of prostacyclin, the opening of KATP and free radical production.

19.
Int. j. morphol ; 37(4): 1572-1577, Dec. 2019. tab
Article in English | LILACS | ID: biblio-1040171

ABSTRACT

Hypoxia hypobaric (HH) can cause alterations at testicular level, with temperature increase, intrascrotal alteration and deterioration of spermatogenesis. Nonsteroidal anti-inflammatory drugs (NSAIDs) such as ketoprofen have anti-angiogenic properties, and can decrease testicular abnormalities. The objective of the study was to evaluate the effect of ketoprofen on spermatogenesis of mice exposed to continuous hypobaric hypoxia. 78 Mus musculus CF-1 male mice 3 to 4 months old were used and subjected to HH in chamber at 4200 m. They were divided into 13 groups (G) of 6 animals: 10 with HH cycles (1, 2, 3, 4 and 8, lasting 8.3 days each cycle, two groups each) and 3 in normoxia (Nx). Intraperitoneal ketoprofen 25 mg/kg was administered every 4 days. Euthanasia of these animals was performed at the end of each cycle and in the case the Nx groups at the end of cycles 1, 4 and 8. Percentage of microhematocrit and reticulocytes were measured in blood smears and a morphometric and histopathological analysis of the height of the epithelium, the tubular diameter and the diameter of the tubular lumen was made. It was shown that hematocrit increases continuously up to 8 cycles, while reticulocytes increase up to 3 cycles. Continuous HH decreases the tubular diameter in a sustained manner and proportional to HH cycles, and the height increased only in the groups subjected to 8 cycles. The groups treated with ketoprofen saw a decrease in angiogenesis, presenting some degree of protection at the testicular level.


La hipoxia hipobárica (HH) puede provocar alteraciones a nivel testicular, con aumento de la temperatura, alteración intraescrotal y deterioro de la espermatogénesis. Los antiinflamatorios no esteroidales (AINEs) como el ketoprofeno tienen propiedades antiangiogénicas, pudiendo disminuir las alteraciones testiculares. El objetivo de estudio fue evaluar el efecto del ketoprofeno en la espermatogénesis de ratones expuestos a hipoxia hipobárica continua. Se utilizaron 78 ratones macho Mus musculus CF-1 de 3 a 4 meses de edad y se sometieron a HH en cámara a 4200 m. Se dividieron en 13 grupos (G) de 6 animales: 10 con ciclos de HH (1, 2, 3, 4 y 8, con duración de 8,3 días cada ciclo, dos grupos cada uno) y 3 en normoxia (Nx). Se administró ketoprofeno intraperitoneal 25 mg/kg cada 4 días. La eutanasia de estos animales se realizó al final de cada ciclo y en el caso los grupos Nx al final de los ciclos 1, 4 y 8. Se midió porcentaje de microhematocrito y reticulocitos en frotis de sangre y se hizo un análisis morfométrico e histopatológico de la altura del epitelio, el diámetro tubular y el diámetro de la luz tubular. Se evidenció que el hematocrito aumenta de manera continua hasta los 8 ciclos, en cambio los reticulocitos aumentan hasta los 3 ciclos. La HH continua disminuye el diámetro tubular de forma sostenida y proporcional a los ciclos de HH, y la altura aumentó sólo en los grupos sometidos a 8 ciclos. Los grupos tratados con ketoprofeno se vio una disminución de la angiogénesis, presentando algún grado de protección a nivel testicular.


Subject(s)
Animals , Male , Mice , Spermatogenesis/drug effects , Testis/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Ketoprofen/pharmacology , Hypoxia/physiopathology , Reticulocytes/drug effects , Seminiferous Tubules/drug effects , Testis/injuries , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Ketoprofen/administration & dosage , Hematocrit , Neovascularization, Pathologic
20.
Metro cienc ; 27(2): 67-71, dic. 2019.
Article in Spanish | LILACS | ID: biblio-1104249

ABSTRACT

Resumen: El edema pulmonar por mal de altura es una entidad no cardiogénica que se debe a hipoxia hipobárica y falta de adaptación pulmonar en los pacientes que retornan a altitudes mayores de 2.500 m luego de haber permanecido a nivel del mar por varios días. Esta entidad, frecuente en los niños, debido a sus características anatómicas y fisiológicas, suele ser subdiagnosticada o confundida con otras patologías que cursan con insuficiencia respiratoria. Presentamos el caso de un paciente de sexo masculino, 4 años de edad, atendido en Emergencias por dificultad respiratoria severa por mal de altura.


Abstract: Pulmonary edema by altitude sickness is a non-cardiogenic entity, due to lack of pulmonary adaptation and hypobaric hypoxia in patients who return to altitudes higher than 2,500 meters after staying for several days at sea level. This entity is frequent in children, given their physiological and anatomical characteristics. It tends to be underdiagnosed or confused with other pathologies associated with shortness of breath. We present the case of a four-year-old male patient, who attended the emergency department for severe respiratory distress caused by altitude sickness.


Subject(s)
Humans , Male , Child, Preschool , Pulmonary Edema , Child , Altitude Sickness
SELECTION OF CITATIONS
SEARCH DETAIL