Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Korean Journal of Pediatrics ; : 356-363, 2009.
Article in Korean | WPRIM | ID: wpr-53295

ABSTRACT

PURPOSE: A polymorphism in the IGF-I gene promoter region is known to be associated with serum IGF-I levels, birth weight, and body length, suggesting that IGF-I gene polymorphism might influence postnatal growth. The present study aimed to investigate the role of this polymorphic cytosine-adenine (CA) repeat of the IGF-I gene in children with idiopathic short stature. METHODS: The study involved 131 children (72 boys and 59 girls) diagnosed with idiopathic short stature, aged 7-15 years. Genomic DNA was extracted from anticoagulated peripheral whole blood. The primers were designed to cover the promoter region containing the polymorphic CA repeat. Data were analyzed using GeneMapper software. The correlations between age and serum IGF-I levels were analyzed using Spearmans correlation coefficient. RESULTS: The CA repeat sequences ranged from 15 to 22 , with 19 CA repeats the most common with an allele frequency of 40.6%. Homozygous for 19 CA repeat was 13.0%, heterozygous for 19 CA repeat was 56.5%, and 19 CA non-carrier was 30.5%. The three different genotype groups showed no significant differences in height, body weight and body mass index, and serum IGF-I levels. The serum IGF-I level and age according to the IGF-I genotypes were significantly correlated in the entire group, 19 CA repeat carrier group, and the non-carrier group. The three groups also showed no significant differences in the first year responsiveness to GH treatment. CONCLUSION: There were no significant different correlations between 19 CA repeat polymorphism and serum IGF-I levels according to genotype. Our results suggest that the IGF-I 19 CA repeat gene polymorphism is not functional in children with idiopathic short stature.


Subject(s)
Aged , Child , Humans , Adenine , Birth Weight , Body Height , Body Mass Index , Cytosine , DNA , Gene Frequency , Genotype , Insulin-Like Growth Factor I , Promoter Regions, Genetic
2.
Korean Journal of Pediatrics ; : 1340-1347, 2006.
Article in Korean | WPRIM | ID: wpr-157933

ABSTRACT

PURPOSE: The aim of the present study was to investigate the role of polymorphic cytosine adenine (CA) repeat of the IGF-I gene in the age-related alterations of serum IGF-I levels in healthy children. METHODS: Two hundred and forty three normal healthy children (136 boys; 107 girls) aged between 7 and 15 years were enrolled in the present study. The primers were designed to cover the promoter regions containing the polymorphic CA repeat. Data were analyzed using GeneMapper software, version 3.7. All analyses were performed using MEDCALC software packages. RESULTS: Deletion of 2 bp (G, A) following 3' of CA repeat were observed in all Korean children. The CA repeat sequences ranged from 17 to 23, and 19 CA repeat were the most common with an alleles frequency of 39.3 percent. Considering genotypes, 63.8 percent of subjects were homozygote or heterozygote for 19 CA repeat (192 bp allele), suggesting that this is wild type allele from which all other alleles originated in Korean children. Homozygote for 19 CA repeat were 14.7 percent, heterozygote for 19 CA repeat was 49.1 percent and 19 CA noncarriers totalled 36.2 percent. In 19 CA repeat noncarriers, the mean height, weight and serum IGF-I level were lower compared with those of 19 CA homozygous carriers, but statistically not significant. Correlations between serum IGF-I level and age according to the IGF-I genotypes revealed statistically significant relationships in the all groups, in the 19 CA repeat carrier group and, even in the noncarrier group. CONCLUSIONS:There were no significant differences of the mean height, weight and serum IGF-I levels among three different genotype groups. Also, there were no significantly different correlations between 19 CA repeat polymorphisms and serum IGF-I levels, according to genotype. Our results suggest that the IGF-I 19 CA repeat gene polymorphism is not associated with circulating IGF-I levels in healthy children.


Subject(s)
Adolescent , Child , Humans , Adenine , Alleles , Cytosine , Genotype , Heterozygote , Homozygote , Insulin-Like Growth Factor I , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL