Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.861
Filter
1.
Braz. j. med. biol. res ; 57: e13235, fev.2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1550145

ABSTRACT

Abstract The imbalance between pro-inflammatory M1 and anti-inflammatory M2 macrophages plays a critical role in the pathogenesis of sepsis-induced acute lung injury (ALI). Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may modulate macrophage polarization toward the M2 phenotype by altering mitochondrial activity. This study aimed to investigate the role of the PGC-1α agonist pioglitazone (PGZ) in modulating sepsis-induced ALI. A mouse model of sepsis-induced ALI was established using cecal ligation and puncture (CLP). An in vitro model was created by stimulating MH-S cells with lipopolysaccharide (LPS). qRT-PCR was used to measure mRNA levels of M1 markers iNOS and MHC-II and M2 markers Arg1 and CD206 to evaluate macrophage polarization. Western blotting detected expression of peroxisome proliferator-activated receptor gamma (PPARγ) PGC-1α, and mitochondrial biogenesis proteins NRF1, NRF2, and mtTFA. To assess mitochondrial content and function, reactive oxygen species levels were detected by dihydroethidium staining, and mitochondrial DNA copy number was measured by qRT-PCR. In the CLP-induced ALI mouse model, lung tissues exhibited reduced PGC-1α expression. PGZ treatment rescued PGC-1α expression and alleviated lung injury, as evidenced by decreased lung wet-to-dry weight ratio, pro-inflammatory cytokine secretion (tumor necrosis factor-α, interleukin-1β, interleukin-6), and enhanced M2 macrophage polarization. Mechanistic investigations revealed that PGZ activated the PPARγ/PGC-1α/mitochondrial protection pathway to prevent sepsis-induced ALI by inhibiting M1 macrophage polarization. These results may provide new insights and evidence for developing PGZ as a potential ALI therapy.

2.
An. bras. dermatol ; 99(1): 72-79, Jan.-Feb. 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1527691

ABSTRACT

Abstract Background: Methotrexate (MTX) is an alternative treatment for patients with moderate/severe atopic dermatitis (AD). Objective: The authors evaluated the effect of MTX on the cutaneous expression of cytokines and chemokines that are involved in the inflammatory response in adult AD patients who received treatment with methotrexate for 24 weeks. Methods: The authors conducted a prospective single-institution cohort study with 12 adults with moderate/severe AD who received oral MTX (15 mg/wk for 24 wks) and 10 non-atopic matched controls. The comparison was made of skin biopsies of lesional and non-lesional skin, pre- and post MTX treatment. The authors analyzed mean epidermal thickness and expression of IL-31, IL-31RA, OSMR, TSLP, Ki67, IL-4 mRNA, IL-6, IL-10, TNF-α, IFN-γ, TARC, and CCL-22. Results: There was a reduction in mean epidermal thickness (p = 0.021), an increase in IL-31RA expression (immunohistochemistry) in the epidermis (p = 0.016) and a decrease in IL-31 gene expression (p = 0.019) on lesional AD skin post-MTX treatment. No significant changes in the cutaneous expression of the other evaluated markers were identified. Study limitations: Small sample size and limited length of follow-up. Conclusions: Treatment with MTX in adults with moderate/severe AD reduced epidermal hyperplasia and changed the cutaneous expression of inflammatory cytokines and receptors that are mainly related to pruritus, including IL-31 and IL-31RA.

3.
Hepatología ; 5(1): 48-61, ene 2, 2024. fig
Article in Spanish | LILACS, COLNAL | ID: biblio-1530765

ABSTRACT

La albúmina sérica humana es la proteína más abundante en el plasma, su estructura molecular le confiere estabilidad, pero también flexibilidad para ligar y transportar un amplio rango de moléculas. Su función oncótica es la propiedad más reconocida que la lleva a introducirse en la terapéutica médica como un expansor de volumen. Sin embargo, en los últimos años se le han adicionado funciones con carácter antioxidante, inmunomodulador y de estabilización endotelial, que hacen presumir que su impacto terapéutico está más allá de sus funciones volumétricas. En los últimos años, específicamente en la cirrosis y la falla hepática aguda sobre crónica, se ha tenido un cambio en el paradigma fisiológico, desde una perspectiva netamente hemodinámica hacia una perspectiva inflamatoria, en donde las funciones oncóticas y no oncóticas de la albúmina están alteradas y tienen un carácter pronóstico en estas entidades. Este conocimiento creciente, desde una perspectiva inflamatoria, hace que se fortalezca el uso terapéutico de la albúmina sérica humana desde las indicaciones tradicionales como prevención de la disfunción circulatoria posparacentesis, prevención y tratamiento de lesión renal aguda, hasta las discusiones para administración a largo plazo en pacientes cirróticos con ascitis.


Human serum albumin is the most abundant protein in plasma, with a molecular structure that provides stability while also allowing flexibility to bind and transport a wide range of molecules. Its oncotic function is the most recognized property, leading to its introduction in medical therapy as a volume expander. However, in recent years, additional functions with antioxidant, immunomodulatory, and endothelial stabilization properties have been identified, suggesting that its therapeutic impact extends beyond its volumetric functions. Specifically, in cirrhosis and acute-on-chronic liver failure, there has been a shift in the pathophysiological paradigm from a purely hemodynamic perspective to an inflammatory perspective, where both oncotic and non-oncotic functions of albumin are altered and have prognostic significance in these conditions. This growing understanding from an inflammatory perspective strengthens the therapeutic use of human serum albumin, not only for traditional indications such as the prevention of post-paracentesis circulatory disfunction, prevention and treatment of acute kidney injury, but also for discussions regarding long-term administration in cirrhotic patients with ascites.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 140-148, 2024.
Article in Chinese | WPRIM | ID: wpr-999170

ABSTRACT

ObjectiveTo investigate the protective effect of total lignans of Arctii Fructus on the retinal tissue in the rat model of type 2 diabetes mellitus. MethodWistar rats were randomized into normal, model, solvent, Shuangdan Mingmu Capsules (618 mg·kg-1), and low-, medium-, and high-dose (100, 200, 400 mg·kg-1, respectively) total lignans of Arctii Fructus groups, with 16 rats in each group. The rat model was established by streptozotocin (STZ) combined with a high-fat diet and administrated with corresponding drugs by gavage once a day for 14 weeks. At the 14th week, blood was sampled for the collection of serum from the abdominal aorta after anesthesia, and bilateral eyeballs were collected and frozen. Hematoxylin-eosin (HE) staining was used to observe the histopathological changes of the retinal tissue in rats. The pathological changes of retinal vascular network in rats were observed by retinal vascular tissue digestion and mounting The levels of vascular endothelial growth factor (VEGF), tumor necrosis factor-α (TNF-α), and intercellular adhesion molecule-1 (ICAM-1) in the serum were determined by the ELISA kit. ResultCompared with the normal group, the solvent group showed pathological changes in the retinal tissue, reduced retinal ganglion cells (P<0.01), and retinal thinning (P<0.01), decreased E/P value in retinal blood vessels (P<0.01), and elevated serum levels of VEGF, TNF-α, and ICAM-1 (P<0.01). Compared with the model group, the total lignans of Arctii Fructus increased the retinal ganglion cells (P<0.01), thickened the retina (P<0.01), and lowered the serum levels of VEGF, TNF-α, and ICAM-1 (P<0.05, P<0.01). ConclusionTotal lignans of Arctii Fructus may lower the VEGF, TNF-α, and ICAM-1 levels to protect the retina.

5.
Chinese journal of integrative medicine ; (12): 277-288, 2024.
Article in English | WPRIM | ID: wpr-1010331

ABSTRACT

As a serious cardiovascular disease, atherosclerosis (AS) causes chronic inflammation and oxidative stress in the body and poses a threat to human health. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a member of the phospholipase A2 (PLA2) family, and its elevated levels have been shown to contribute to AS. Lp-PLA2 is closely related to a variety of lipoproteins, and its role in promoting inflammatory responses and oxidative stress in AS is mainly achieved by hydrolyzing oxidized phosphatidylcholine (oxPC) to produce lysophosphatidylcholine (lysoPC). Moreover, macrophage apoptosis within plaque is promoted by localized Lp-PLA2 which also promotes plaque instability. This paper reviews those researches of Chinese medicine in treating AS via reducing Lp-PLA2 levels to guide future experimental studies and clinical applications related to AS.


Subject(s)
Humans , 1-Alkyl-2-acetylglycerophosphocholine Esterase , Medicine, Chinese Traditional , Atherosclerosis/drug therapy , Lipoproteins , Plaque, Atherosclerotic , Biomarkers
6.
Chinese journal of integrative medicine ; (12): 152-162, 2024.
Article in English | WPRIM | ID: wpr-1010329

ABSTRACT

OBJECTIVE@#To investigate whether electroacupuncture (EA) at sensitized acupoints could reduce sympathetic-sensory coupling (SSC) and neurogenic inflammatory response by interfering with 5-hydroxytryptamine (5-HT)ergic neural pathways to relieve colitis and somatic referred pain, and explore the underlying mechanisms.@*METHODS@#Rats were treated with 5% dextran sodium sulfate (DSS) solution for 7 days to establish a colitis model. Twelve rats were randomly divided into the control and model groups according to a random number table (n=6). According to the "Research on Rat Acupoint Atlas", sensitized acupoints and non-sensitized acupoints were determined. Rats were randomly divided into the control, model, Zusanli-EA (ST 36), Dachangshu-EA (BL 25), and Xinshu (BL 15) groups (n=6), as well as the control, model, EA, and EA + GR113808 (a 5-HT inhibitor) groups (n=6). The rats in the control group received no treatment. Acupuncture was administered on 2 days after modeling using the stimulation pavameters: 1 mA, 2 Hz, for 30 min, with sparse and dense waves, for 14 consecutive days. GR113808 was injected into the tail vein at 5 mg/kg before EA for 10 min for 7 consecutive days. Mechanical sensitivity was assessed with von Frey filaments. Body weight and disease activity index (DAI) scores of rats were determined. Hematoxylin and eosin staining was performed to observe colon histopathology. SSC was analyzed by immunofluorescence staining. Immunohistochemical staining was performed to detect 5-HT and substance P (SP) expressions. The calcitonin gene-related peptide (CGRP) in skin tissue and tyrosine hydroxylase (TH) protein levels in DRG were detected by Western blot. The levels of hyaluronic acid (HA), bradykinin (BK), prostaglandin I2 (PGI2) in skin tissue, 5-HT, tryptophan hydroxylase 1 (TPH1), serotonin transporters (SERT), 5-HT 3 receptor (5-HT3R), and 5-HT 4 receptor (5-HT4R) in colon tissue were measured by enzyme-linked immunosorbent assay (ELISA).@*RESULTS@#BL 25 and ST 36 acupoints were determined as sensitized acupoints, and BL 15 acupoint was used as a non-sensitized acupoint. EA at sensitized acupoints improved the DAI score, increased mechanical withdrawal thresholds, and alleviated colonic pathological damage of rats. EA at sensitized acupoints reduced SSC structures and decreased TH and CGRP expression levels (P<0.05). Furthermore, EA at sensitized acupoints reduced BK, PGI2, 5-HT, 5-HT3R and TPH1 levels, and increased HA, 5-HT4R and SERT levels in colitis rats (P<0.05). GR113808 treatment diminished the protective effect of EA at sensitized acupoints in colitis rats (P<0.05).@*CONCLUSION@#EA at sensitized acupoints alleviated DSS-induced somatic referred pain in colitis rats by interfering with 5-HTergic neural pathway, and reducing SSC inflammatory response.


Subject(s)
Rats , Animals , Electroacupuncture , Rats, Sprague-Dawley , Serotonin , Acupuncture Points , Pain, Referred , Calcitonin Gene-Related Peptide , Signal Transduction , Colitis/therapy , Indoles , Sulfonamides
7.
Chinese journal of integrative medicine ; (12): 222-229, 2024.
Article in English | WPRIM | ID: wpr-1010311

ABSTRACT

OBJECTIVE@#To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective.@*METHODS@#Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction.@*RESULTS@#TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01).@*CONCLUSIONS@#TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.


Subject(s)
Male , Animals , Mice , Tripterygium , Psoriasis/drug therapy , Keratinocytes , Skin Diseases/metabolism , Cytokines/metabolism , Imiquimod/metabolism , Dermatitis/pathology , Disease Models, Animal , Mice, Inbred BALB C , Skin/metabolism
8.
China Pharmacy ; (12): 942-947, 2024.
Article in Chinese | WPRIM | ID: wpr-1016716

ABSTRACT

OBJECTIVE To study the ameliorative effect and potential mechanism of curcumin on diabetes model rats with depression based on cAMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway. METHODS The diabetes model rat with depression was established by high fat and high sugar diet+intraperitoneal injection of streptozotocin+chronic unpredictable stress-induced depression. The successfully modeled rats were randomly divided into model group, positive control group (0.18 g/kg metformin and 1.8 mg/kg fluoxetine, gavage), curcumin low-dose and high-dose groups (30, 60 mg/kg, gavage) and curcumin high-dose+CREB inhibitor group [60 mg/kg curcumin (gavage)+5 mg/kg CREB inhibitor 666-15 (intraperitoneal injection)], with 12 rats in each group. Another 12 healthy rats were selected as the normal group. Each group was given a corresponding intervention for 4 weeks, the fasting blood glucose level of rats was detected, and the depression of rats was assessed. The levels of corticosterone (CORT) and inflammatory factors [tumor necrosis factor-α (TNF-α), interleukin- 1β (IL-1β), IL-6] in serum, and the levels of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) in hippocampal tissue were determined. The pathological changes and neuronal apoptosis were observed in the hippocampal tissue of rats in each group; the expression levels of CREB, BDNF mRNA and protein in hippocampal tissue were detected. RESULTS Compared with the normal group, the hippocampal tissue of rats in the model group was severely damaged, and neurons were scattered, while the fasting blood glucose, the forced swimming immobility time, the tail suspension immobility time, serum levels of CORT, TNF-α, IL-1β and IL-6, and neuron apoptosis indexes were all increased or prolonged significantly (P<0.05). The levels of NE and 5-HT, the number of surviving neurons, and the expression levels of CREB and BDNF mRNA and protein in hippocampal tissue were decreased significantly (P<0.05). Compared with the 的model group, the damage to hippocampal tissue was relieved in the positive control group and curcumin groups, while the above indexes were improved significantly (P<0.05). The improvement effect of curcumin high-dose group was better than that of curcumin low-dose group (P<0.05). CREB inhibitor could significantly reverse the ameliorative effect of high-dose curcumin on the model rats (P<0.05). CONCLUSIONS Curcumin can improve the depression of diabetes model rats with depression, and relieve neuronal damage and inflammatory response, the mechanism of which may be associated with activating CREB/BDNF signaling pathway.

9.
China Pharmacy ; (12): 931-935, 2024.
Article in Chinese | WPRIM | ID: wpr-1016714

ABSTRACT

OBJECTIVE To study the improvement effect of total flavonoids from Rosa multiflora root on vascular injury in rheumatoid arthritis (RA) model rats and its potential mechanism. METHODS Female Wistar rats were randomly divided into normal control group, model group, aspirin group (positive control, 30 mg/kg), low-dose and high-dose groups of total flavonoids from R. multiflora root (4.15, 8.30 g/kg, by crude drug), with 10 rats in each group. Except for the normal control group, the RA model was induced in other groups by collagen induction and high-fat diet. After 14 days of modeling, they were given corresponding drug solution/0.5% sodium carboxymethyl cellulose solution intragastrically, once a day, for 36 consecutive days. The total body score, arthritis index (AI) and swollen joint count (SJC) of the rats were evaluated regularly. After the last medication, serum levels of interleukin-6 (IL-6), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule- 1 (VCAM-1) were determined. The pathological morphological changes in the vascular tissue of thoracic aorta were observed; the protein expression of Toll-like receptor 4 (TLR4) and the protein phosphorylation levels of Janus kinase 2 (JAK2) and signal transduction and activator of transcription 3 (STAT3) in vascular tissue of thoracic aorta were measured. RESULTS Compared with the normal control group, serum levels of IL-6, ICAM-1 and VCAM-1, protein expression of TLR4, and the protein phosphorylation levels of JAK2 and STAT3 in vascular tissue of thoracic aorta were increased significantly in model group (P< 0.01). The atherosclerotic plaque (atheroma), cholesterol crystal, lymphocyte infiltration and a small number of unbroken foam cell aggregation could be seen in the vascular tissue of thoracic aorta. Compared with the model group, total body score (except for the low-dose group), AI and SJC were decreased significantly in groups of total flavonoids from R. multiflora root on the 28th day (P<0.05 or P<0.01); total body score,AI and SJC were decreased significantly in low-dose group of total flavonoids from R. multiflora root on the 49th day (P<0.05 or P<0.01); the other quantitative indicators in serum and vascular tissue were significantly reversed in groups of total flavonoids from R. multiflora root (P<0.05 or P<0.01), and pathological damage of vascular tissue was significantly relieved. CONCLUSIONS Total flavonoids from R. multiflora root can significantly improve vascular injury in RA model rats, and its mechanism may be related to reducing the protein expression of TLR4 in vascular tissue and inhibiting the activation of IL-6/JAK2/ STAT3 signaling pathway.

10.
Acta Pharmaceutica Sinica ; (12): 269-278, 2024.
Article in Chinese | WPRIM | ID: wpr-1016656

ABSTRACT

Non-infectious chronic diseases in human including diabetes, non-alcoholic fatty liver disease (NAFLD), atherosclerosis (AS), neurodegenerative diseases, osteoporosis, as well as malignant tumors may have some common pathogenic mechanisms such as non-resolved inflammation (NRI), gut microbiota dysfunction, endoplasmic reticulum stress, mitochondria dysfunction, and abnormality of the mammalian target of rapamycin (mTOR) pathway. These pathogenic mechanisms could be the basis for "homotherapy for heteropathy" in clinic. Some commonly used clinical drugs, such as metformin, berberine, aspirin, statins, and rapamycin may execute therapeutic effect on their targeted diseases,and also have the effect of "homotherapy for heteropathy". The mechanisms of the above drugs may include anti-inflammation, modulation of gut microbiota, suppression of endoplasmic reticulum stress, improvement of mitochondria function, and inhibition of mTOR. For virus infectious diseases, as some viruses need certain commonly used replicases, the inhibitors of the replicases become examples of "homotherapy for heteropathy" for antiviral therapy in clinic (for example tenofovir for both AIDS and HBV infection). Especially, in case of outbreak of new emerging viruses, these viral enzyme inhibitors such as azvudine and sofibuvir, could be rapidly used in controlling viral epidemic or pandemic, based on the principle of "homotherapy for heteropathy". In this review article, we show the research progress of the biological basis for "homotherapy for heteropathy" and the possible mechanisms of some well-known drugs, in order to provide insights and new references for innovative drug R&D.

11.
Acta Pharmaceutica Sinica ; (12): 289-297, 2024.
Article in Chinese | WPRIM | ID: wpr-1016647

ABSTRACT

Sepsis is a condition characterized by organ dysfunction resulting from the systemic inflammatory response triggered by an infection. Excessive inflammation and immunosuppression are intertwined, and severe cases may even develop into multiple organ failure. Studies have shown that indoleamine 2,3-dioxygenase 1-mediated tryptophan metabolism is involved in the occurrence and development of sepsis, and elevated plasma kynurenine levels and Kyn/Trp ratios are early indicators of sepsis development. In this paper, we provide a comprehensive summary of the role of IDO1 in the acute inflammatory phase of sepsis, late immunosuppression, and organ damage. This includes its regulation of inflammatory state, immune cell function, blood pressure, and other aspects. Additionally, we analyze preclinical studies on targeted IDO1 drugs. An in-depth understanding and study of IDO may help to understand the pathogenesis and clinical significance of sepsis and multiple organ damage from a new perspective and provide new research ideas for exploring its prevention and treatment methods.

12.
Acta Pharmaceutica Sinica ; (12): 511-519, 2024.
Article in Chinese | WPRIM | ID: wpr-1016627

ABSTRACT

Cells undergo glucose metabolism reprogramming under the influence of the inflammatory microenvironment, changing their primary mode of energy supply from oxidative phosphorylation to aerobic glycolysis. This process is involved in all stages of inflammation-related diseases development. Glucose metabolism reprogramming not only changes the metabolic pattern of individual cells, but also disrupts the metabolic homeostasis of the body microenvironment, which further promotes aerobic glycolysis and provides favourable conditions for the malignant progression of inflammation-related diseases. The metabolic enzymes, transporter proteins, and metabolites of aerobic glycolysis are all key signalling molecules, and drugs can inhibit aerobic glycolysis by targeting these specific key molecules to exert therapeutic effects. This paper reviews the impact of glucose metabolism reprogramming on the development of inflammation-related diseases such as inflammation-related tumours, rheumatoid arthritis and Alzheimer's disease, and the therapeutic effects of drugs targeting glucose metabolism reprogramming on these diseases.

13.
International Eye Science ; (12): 731-736, 2024.
Article in Chinese | WPRIM | ID: wpr-1016586

ABSTRACT

Diabetic retinopathy(DR)represents the primary cause of blindness among the global working-age population, and the disruption of the blood-retinal barrier is a crucial factor. Research in recent years has elucidated that DR transcends the scope of a mere microvascular disorder into a complex interplay of retinal glial cells and neurodegeneration microvascular pathology. Neuronal damage may precede vascular endothelial changes in the retinal neurovascular unit(RNVU)in the early stage of DR, and glial cell activation further exacerbates vascular barrier dysfunction. Retinal microglia are immune cells that reside in the retina and are involved in chronic inflammatory responses induced by long-term exposure to high glucose levels. Microglia secrete various inflammatory factors in response to high glucose levels, which can lead to the destruction of the blood-retinal barrier structure, increased neuronal apoptosis, and altered gliosis of Muller cells, thus affecting the retina's homeostatic balance. The RNVU has received increasing attention in recent years as a unitary structural study, and the mechanism of microglia in the RNVU and the progress of the study are reviewed.

14.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 159-168, 2024.
Article in Chinese | WPRIM | ID: wpr-1016475

ABSTRACT

ObjectiveTo evaluate some properties of scutellarin-phospholipid complex nanoemulsion(SCU-PC-NE), such as release, cell uptake and tissue distribution, and to investigate its effect on ameliorating lipopolysaccharide(LPS)-induced vascular endothelial injury. MethodSCU-PC-NE was prepared by weighting SCU-PC, ethyl oleate, Kolliphor HS15, 1,2-propylene glycol(50, 400, 514.3, 85.7 mg), respectively. And the appearance of SCU-PC-NE was observed by transmission electron microscope, the average paticle size and Zeta potential were measured by nanopotential particle size analyzer. The cumulative release of SCU-PC-NE in vitro was measured by dynamic dialysis, thiazolyl blue(MTT) colorimetric assay was used to investigate the effect of SCU-PC-NE on the viability of human umbilical vein endothelial cells(HUVECs), the inverted fluorescence microscope and flow cytometry were used to investigate cell uptake of HUVECs by SCU-PC-NE in vitro using coumarin 6 as a fluorescent probe, the tissue distribution of DiR/SCU-PC-NE labeled by near infrared fluorescent dyes was obeserved by small animal in vivo imaging system. The inflammation injury model was established by co-incubation with LPS(1 mg·L-1) and HUVECs, the effect of SCU-PC-NE on the levels of interleukin(IL)-1β and IL-6 were determined by enzyme-linked immunosorbent assay(ELISA), 18 Kunming male mice were randomly divided into blank group, model group, blank preparation group(equivalent to high dose group), SCU group and SCU-PC-NE low and high dose groups(5, 10 mg·kg-1), 3 mice in each group, and the drug administration groups were administered once in the tail vein at the corresponding dose every 48 h, equal volume of normal saline was given to the blank group and the model group, and the drug was administered for 4 consecutive times. Except for the blank group, the endothelial inflammatory injury was induced by intraperitoneal injection of LPS(10 mg·kg-1) at 12 h before the last administration in each group. Hematoxylin-eosin(HE) staining was used to investigate the effect of SCU-PC-NE on the histopathological changes in the thoracic aorta of mice. ResultThe appearance of SCU-PC-NE displayed pale yellow milky light, mostly spherical with rounded appearance and relatively uniform particle size distribution, with the average particle size of 35.31 nm, Zeta potential of 7.23 mV, and the encapsulation efficiency of 75.24%. The cumulative release in vitro showed that SCU-PC-NE exhibited sustained release properties compared with SCU. The cell viability of SCU-PC-NE was >90% at a concentration range of 1.05-8.4 mg·L-1. The results of cellular uptake experiments showed that the cellular uptake ability of SCU-PC-NE was significantly enhanced when compared with the SCU group(P<0.01). Compared with normal mice, the results of tissue distribution showed that the fluorescence intensity of DiR/SCU-PC-NE was significantly enhanced in the spleen, kidney, brain and thoracic aorta of mice at different time points after intraperitoneal injection of LPS(P<0.05, P<0.01), especially in thoracic aorta. ELISA results showed that the levels of IL-1β and IL-6 in the model group were significantly increased when compared with the blank group(P<0.05, P<0.01), and compare with the model group, all administration groups significantly down-regulated IL-1β level, with the strongest effect in the SCU-PC-NE high-dose group(P<0.01), and all administration groups significantly down-regulated IL-6 level, with the strongest effect in the SCU-PC-NE low-dose group(P<0.05). Compare with the blank group, the results of HE staining showed that the endothelial cells were damaged, the elastic fibers were broken and arranged loosely in the model group, although similar vascular injury could be observed in the blank preparation group, SCU group and SCU-PC-NE low-dose group, the vascular endothelial damage was significantly reduced in the high-dose group of SCU-PC-NE, which had a better effect than that in the SCU group. ConclusionSCU-PC-NE can promote the uptake of drugs by endothelial cells and effectively enriched in the site of vascular endothelial injury caused by LPS, suggesting that it has a protective effect on vascular endothelial injury and is a good carrier of SCU.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 29-36, 2024.
Article in Chinese | WPRIM | ID: wpr-1016459

ABSTRACT

ObjectiveTo investigate the effects of Tongluo Juanbi granules on chondrocyte apoptosis and Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway of rabbits with knee osteoarthritis (KOA) and study the mechanism of Tongluo Juanbi granules in the prevention and treatment of KOA. MethodThirty New Zealand rabbits were randomly assigned to the following five groups (n=6): sham group, model group, low-dose and high-dose groups of Tongluo Juanbi granules (4.1 and 8.2 g·kg-1·d-1), and celecoxib group (10.9 mg·kg-1·d-1). The KOA model was established by destabilization of the medial meniscus (DMM) for six weeks. Six weeks after the modeling, the drug was given once a day for eight weeks. The pathological changes of cartilago articularis were observed by hematoxylin-eosin (HE) staining and Safranin O-Fast Green staining. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed to detect chondrocyte apoptosis. Enzyme-linked immunosorbent assay (ELISA) was used to detect the contents of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in synovial fluid. The mRNA and protein expression levels of genes related to the TLR4/MyD88/NF-κB signaling pathway were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot, respectively. ResultCompared with the sham group, the cartilago articularis of the model group significantly degenerated. Mankin's score was increased (P<0.01), and the contents of IL-1β and TNF-α in synovial fluid were increased (P<0.01). The number of apoptosis of chondrocytes was increased (P<0.01). The mRNA and protein expressions of TLR4, MyD88, and NF-κB p65 in cartilage tissue were up-regulated (P<0.01), while the mRNA and protein expressions of Bcl-2 were down-regulated (P<0.01). Compared with the model group, chondrocyte degeneration in both low-dose and high-dose groups of Tongluo Juanbi granules was improved, and Mankin's score was decreased (P<0.01). The contents of IL-1β and TNF-α were decreased (P<0.01), and the number of apoptosis of chondrocytes was decreased (P<0.01). The mRNA and protein expressions of TLR4, MyD88, and NF-κB p65 in cartilage tissue were down-regulated (P<0.01), while the mRNA and protein expressions of Bcl-2 were up-regulated (P<0.01). In addition, in the above observation indicators, the high-dose group of Tongluo Juanbi granules was significantly superior to the low-dose group of Tongluo Juanbi granules. ConclusionTongluo Juanbi granules could inhibit chondrocyte apoptosis in rabbits with KOA and improve cartilage degeneration, which may be related to inhibiting inflammatory responses mediated by TLR4/MyD88/NF-κB signaling pathway.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 20-28, 2024.
Article in Chinese | WPRIM | ID: wpr-1016458

ABSTRACT

ObjectiveTo study the effects of Epimedii Folium polysaccharides on mice with exercise-induced fatigue and explore its possible mechanism of action. MethodICR male mice screened by swimming training were randomly divided into a control group, model group, vitamin C group, and low, medium, and high dose groups of Epimedii Folium polysaccharides, with eight mice in each group. The exercise-induced fatigue model was established by weight-bearing swimming training in each group except for the control group. After two weeks of weight-bearing swimming, the Epimedii Folium polysaccharide groups were given 100, 200, 400 mg∙kg-1 of Epimedii Folium polysaccharides by gavage, and the vitamin C group was given 200 mg∙kg-1 of vitamin C by gavage. The control group and the model group were given equal amounts of saline for 14 d. At the end of the experimental period, the body mass of the mice in each group and the time of last swimming due to exhaustion were recorded. Serum urea nitrogen (BUN), lactic acid (LA), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidation (GSH-Px), myoglycogen (MG) in skeletal muscle, hepatic glycogen (HG) in the liver were detected by kits. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in muscle tissue. Western blot was used to detect the protein expression of p38 mitogen-activated protein kinase (p38 MAPK), phosphorylation (p)-p38 MAPK, extracellular signal-regulated kinase1/2 (ERK1/2), nuclear factor-κB (NF-κB), p-NF-κB, interleukin-1β (IL-1β), and interleukin-6 (IL-6) in muscle tissue. The immunofluorescence (IF) method was used to detect the expression of tumor necrosis factor-α (TNF-α) in skeletal muscle tissue of mice in each group. ResultCompared with the control group, the body mass of mice in the model group decreased, and the time of last swimming due to exhaustion decreased (P<0.01). In addition, there were significantly higher serum levels of the fatigue metabolites LA, LDH, BUN, and lipid peroxidation product MDA (P<0.01) and decreased levels of MG, HG, SOD, and GSH-Px (P<0.01). The protein expressions of p-p38 MAPK, ERK1/2, p-NF-κB, IL-1β, IL-6, and TNF-α in skeletal muscle tissue were significantly higher than those of the control group (P<0.01). Compared with the model group, the body mass and time of last swimming due to exhaustion of the mice in the low, medium, and high dose groups of Epimedii Folium polysaccharides and the vitamin C group were increased (P<0.05, P<0.01), and the contents of LA, LDH, BUN, and MDA were significantly decreased (P<0.05, P<0.01). The levels of MG, HG, SOD, and GSH-Px increased (P<0.05, P<0.01), and the protein expression levels of p-p38 MAPK, ERK, p-NF-κB, IL-1β, IL-6, and TNF-α in skeletal muscle tissue decreased (P<0.05, P<0.01). ConclusionEpimedii Folium polysaccharides can play a role in alleviating exercise-induced fatigue by inhibiting the p38 MARK/NF-κB signaling pathway, thereby reducing the accumulation of metabolites, improving the activity of antioxidant enzymes, increasing the glycogen content of the body, and reducing inflammation in skeletal muscle.

17.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 190-195, 2024.
Article in Chinese | WPRIM | ID: wpr-1016439

ABSTRACT

Ischemic stroke (CIS) refers to ischemic necrosis or softening of localized brain tissue caused by cerebral blood circulation disorders, ischemia and hypoxia. The incidence of CIS is the highest among cerebrovascular diseases. Reduced supply of oxygen and nutrients leads to severe loss of neurons and deficits in brain function in stroke patients. Developing treatments for ischemic stroke remains an important challenge in clinical medicine. The antioxidant N-acetylcysteine (NAC) is a precursor of glutathione, and evidence from animal models of ischemic stroke and some clinical studies suggest that NAC can effectively protect the brain from ischemic damage. In this paper, the mechanism of NAC in CIS is described from various aspects, such as anti-oxidation, inhibition of inflammation, protection of cerebral nerve and mitochondrial function, stabilization of arterial plaque and thrombolytic function, aiming to explore the relationship between NAC and CIS in depth from the basic level, and to provide a theoretical basis for the further application of NAC in the prevention and treatment of patients with ischemic stroke.

18.
Acta Anatomica Sinica ; (6): 43-48, 2024.
Article in Chinese | WPRIM | ID: wpr-1015156

ABSTRACT

Objective To explore the dynamic changes and mechanisms of neurological and cognitive functions in mice with traumatic brain injury (TBI). Methods Totally 60 12⁃month⁃old Balb/ c mice were divided into control group (10 in group) and TBI group (50 in group). TBT model mice were divided into 5 subgroups according to the time of model construction, including model 1 day, model 1 day, model 3 day, model 7 day, model 14 days and model 28 days group with 10 in each group. At the 29th day of the experiment, neurological scores and step down tests were carried out. After the test, the mice were sacrificed for brains which were detected by immunohistochemistry staining, inflammatory cytokine tests and Western blotting. Results Compared with the control group, the neurological scores of mice in TBI group increased, and then decreased after the 7th day when the scores reached the peak. However, the latency of step down errors was lower than control group, and the number of step down errors was higher than control group which had no changes. Compared with the control group, the expression of lonized calcium⁃binding adapter molecule 1(IBA1), chemokine C⁃X3⁃C⁃motif ligand1 (CX3CL1), C⁃X3⁃C chemokine receptor 1(CX3CR1), NOD⁃like receptor thermal protein domain associated protein 3 (NLRP3), and phosphorylation nuclear factor(p⁃NF)⁃κB in TBI group increased and reached to the peak at the 7th day, and then started to decrease. At the same time, the levels of inflammatory cytokines interleukin⁃6(IL⁃6) and tumor necrosis factor⁃α(TNF⁃α) first increased to the peak, and then began to decrease. However, compared with the control group, the expression of amyloid β(Aβ) protein and p⁃Tau protein in the model group continued to increase at all time. Conclusion The TBI model caused continuous activation of microglia along with inflammatory response, which first increased and then decreased, resultsing in neurological scores changes. In addition, the inflammatory response may act as a promoter of Aβ protein deposition and Tau protein phosphorylation, leading to cognitive impairment in mice.

19.
Chinese Pharmacological Bulletin ; (12): 405-409, 2024.
Article in Chinese | WPRIM | ID: wpr-1013648

ABSTRACT

Cardiovascular diseases ( CVDs ) are the leading cause of death worldwide and pose a serious threat to human health. Silent information regulator 5 ( SIRT5 ) , which is widely distributed in cardiac myocytes, vascular smooth muscle cells and endothelial cells,as a novel deacylation-modifying enzyme,plays an important role in CVDs through deacetylation, desuccinylation and demalonylation. This review summarizes the pathophysiolog-ical mechanism of SIRT5 from the aspects of energy metabolism, regulation of inflammatory response and oxidative stress, apart from the role of SIRT5 in CVDs such as myocardial infarction, myocardial hypertrophy, arrhythmia, atherosclerosis and heart failure. This review also figures out the current research progress of SIRT5 -related inhibitors and agonists, so as to provide strategies for targeting SIRT5 to prevent and treat CVDs.

20.
Chinese Pharmacological Bulletin ; (12): 529-536, 2024.
Article in Chinese | WPRIM | ID: wpr-1013646

ABSTRACT

Aim To investigate the mechanism by which formononetin (FN) inhibits mitochondrial dynamic-related protein 1 (DRP1) -NLRP3 axis via intervening the generation of ROS to reduce allergic airway inflammation. Methods In order to establish allergic asthma mouse model, 50 BALB/c mice aged 8 weeks were divided into the control group, model group, FN treatment group and dexamethasone group after ovalbumin (OVA) induction. Airway inflammation and collagen deposition were detected by HampE and Masson staining. Th2 cytokines and superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and IgE levels in bronchoalveolar lavage fluid (BALF) were measured by ELISA, ROS in BEAS-2B cells was assessed by DCFH-DA staining, DRP1 expression in lung tissue and BEAS-2B cells was detected by immunohistochemistry and immunofluorescence, and the DRP1-NLRP3 pathway was analyzed by immunoblotting. Results FN treatment could effectively ameliorate the symptoms of asthmatic mouse model, including reducing eosinophil accumulation, airway collagen deposition, decreasing Th2 cytokine and IgE levels, reducing ROS and MDA production, increasing SOD and CAT activities, and regulating DRP1-NLRP3 pathway-related protein expression, thereby relieving inflammation. Conclusion FN ameliorates airway inflammation in asthma by regulating DRP1-NLRP3 pathway.

SELECTION OF CITATIONS
SEARCH DETAIL