Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Journal of Zhejiang University. Science. B ; (12): 611-627, 2020.
Article in English | WPRIM | ID: wpr-1010541

ABSTRACT

Immunoglobulin Y (IgY) is an effective orally administered antibody used to protect against various intestinal pathogens, but which cannot tolerate the acidic gastric environment. In this study, IgY was microencapsulated by alginate (ALG) and coated with chitooligosaccharide (COS). A response surface methodology was used to optimize the formulation, and a simulated gastrointestinal (GI) digestion (SGID) system to evaluate the controlled release of microencapsulated IgY. The microcapsule formulation was optimized as an ALG concentration of 1.56% (15.6 g/L), COS level of 0.61% (6.1 g/L), and IgY/ALG ratio of 62.44% (mass ratio). The microcapsules prepared following this formulation had an encapsulation efficiency of 65.19%, a loading capacity of 33.75%, and an average particle size of 588.75 μm. Under this optimum formulation, the coating of COS provided a less porous and more continuous microstructure by filling the cracks on the surface, and thus the GI release rate of encapsulated IgY was significantly reduced. The release of encapsulated IgY during simulated gastric and intestinal digestion well fitted the zero-order and first-order kinetics functions, respectively. The microcapsule also allowed the IgY to retain 84.37% immune-activity after 4 h simulated GI digestion, significantly higher than that for unprotected IgY (5.33%). This approach could provide an efficient way to preserve IgY and improve its performance in the GI tract.


Subject(s)
Alginic Acid/chemistry , Chitin/chemistry , Chitosan , Delayed-Action Preparations , Digestion , Drug Compounding , Drug Liberation , Gastrointestinal Tract/metabolism , Immunoglobulins/metabolism , Oligosaccharides
2.
Journal of Zhejiang University. Science. B ; (12): 611-627, 2020.
Article in English | WPRIM | ID: wpr-846941

ABSTRACT

Immunoglobulin Y (IgY) is an effective orally administered antibody used to protect against various intestinal pathogens, but which cannot tolerate the acidic gastric environment. In this study, IgY was microencapsulated by alginate (ALG) and coated with chitooligosaccharide (COS). A response surface methodology was used to optimize the formulation, and a simulated gastrointestinal (GI) digestion (SGID) system to evaluate the controlled release of microencapsulated IgY. The microcapsule formulation was optimized as an ALG concentration of 1.56% (15.6 g/L), COS level of 0.61% (6.1 g/L), and IgY/ALG ratio of 62.44% (mass ratio). The microcapsules prepared following this formulation had an encapsulation efficiency of 65.19%, a loading capacity of 33.75%, and an average particle size of 588.75 µm. Under this optimum formulation, the coating of COS provided a less porous and more continuous microstructure by filling the cracks on the surface, and thus the GI release rate of encapsulated IgY was significantly reduced. The release of encapsulated IgY during simulated gastric and intestinal digestion well fitted the zero-order and first-order kinetics functions, respectively. The microcapsule also allowed the IgY to retain 84.37% immune-activity after 4 h simulated GI digestion, significantly higher than that for unprotected IgY (5.33%). This approach could provide an efficient way to preserve IgY and improve its performance in the GI tract.

3.
Invest. clín ; 54(3): 257-269, sep. 2013. ilus
Article in English | LILACS | ID: lil-740324

ABSTRACT

Neuregulins (NRG) are proteins that belong to the family of epidermal growth factors. It is well established that these factors are essential for the development and maintenance of the nervous system. Due to the difficulty of purifying enough quantities of these factors and the lack of specificity from commercially available antibodies, the aim of this work was to produce antibodies against a synthetic peptide capable to detect and identify neuregulin GGFb isoforms. To accomplish this goal, polyclonal antibodies were raised in hens against a synthetic peptide designed from the GGFb1 extracellular sequence. The sequence analysis was made using different epitope-predicting programs. Our results showed that the peptide sequence selected was immunogenic because it was capable of inducing a specific type B immune response in the experimental animal model. These antibodies were also capable of recognizing a recombinant GGF protein and GGF isoforms present in different samples. Our results suggest that the development of immunoglobulin Y (IgY) using synthetic peptides represents, a valuable tool for neuroscience research.


Las Neuregulinas (NRG) son proteínas que pertenecen a la familia de los factores de crecimiento epidermal. Se ha demostrado que estos factores son esenciales para el desarrollo y mantenimiento de la funcionalidad del sistema nervioso. Debido a la dificultad para purificar estas proteínas y la falta de especificidad de los anticuerpos disponibles comercialmente, el objetivo de este trabajo fue producir anticuerpos contra un péptido sintético capaz de detectar e identificar una isoforma de la Neuregulina (GGFb). Para lograr este objetivo, se desarrollaron anticuerpos en gallinas (IgY) contra un péptido sintético diseñado a partir de la secuencia aminoacídica de la región extracelular de GGFb, utilizando programas de predicción de epítopes. Los resultados demuestran que el péptido seleccionado fue immunogénico debido a que estimuló una respuesta inmune específica tipo B en el modelo utilizado. Estos anticuerpos fueron también capaces de reconocer una proteína recombinante e isoformas de GGF presentes en diferentes muestras biológicas. Nuestros resultados demuestran el potencial valor de las inmunoglobulinas Y (IgY) contra péptidos sintéticos como una herramienta de aplicación para la investigación en neurociencia.


Subject(s)
Animals , Female , Rats , Antibodies, Heterophile/immunology , Chickens/immunology , Immunoglobulins/immunology , Neuregulin-1/immunology , Peptide Fragments/immunology , Antibody Specificity , Antibodies, Heterophile/biosynthesis , Antibodies, Heterophile/isolation & purification , Cells, Cultured , Culture Media, Conditioned , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Immunoblotting , Immunoglobulins/biosynthesis , Immunoglobulins/isolation & purification , Neuregulin-1/analysis , Peptide Fragments/chemical synthesis , Protein Isoforms/analysis , Protein Isoforms/immunology , Rats, Sprague-Dawley , Recombinant Proteins/immunology , Schwann Cells/immunology , Schwann Cells/metabolism , Sciatic Nerve/cytology
4.
Laboratory Animal Research ; : 55-60, 2012.
Article in English | WPRIM | ID: wpr-145352

ABSTRACT

Effects of egg york containing IgY specific for Helicobacter pylori on the bacterial growth and intragastric infection were investigated in comparison with a proton-pump inhibitor pantoprazole. For in vitro anti-bacterial activity test, H. pylori (1x108 CFU/mL) was incubated with a serially diluted IgY for 3 days. As a result, IgY fully inhibited the bacterial growth at 16 mg/mL, which was determined to a minimal inhibitory concentration. In vivo elimination study, male C57BL/6 mice were infected with the bacteria by intragastric inoculation (1x108 CFU/mouse) 3 times at 2-day intervals, and 2 weeks later, orally treated twice a day with 50, 100, 200 or 500 mg/kg IgY for 18 days. After the final administration, biopsy sample of the gastric mucosa was assayed for the bacterial identification via urease, oxidase, catalase, nitrate reduction and H2S tests in addition to microscopic examination for mucosal inflammation. In CLO kit test, 75, 50, 12.5 and 12.5% of the animals revealed positive reaction following treatment with 50, 100, 200 and 500 mg/kg IgY, respectively, resulting in a superior efficacy at 200 mg/kg than 30 mg/kg pantoprazole that displayed 75% elimination. The CLO test results were confirmed by bacterial identification. Microscopic examination revealed that H. pylori infection caused severe gastric mucosal inflammation, which were not observed in the CLO-negative mice following treatment with IgY or pantoprazole. Taken together, IgY inhibited the growth of H. pylori, and improved gastritis and villi injuries by eliminating the bacteria from the stomach. The results indicate that IgY could be a good candidate overcoming tolerance of antibiotics for the treatment of H. pylori-mediated gastric ulcers.


Subject(s)
Animals , Humans , Male , Mice , 2-Pyridinylmethylsulfinylbenzimidazoles , Anti-Bacterial Agents , Bacteria , Biopsy , Catalase , Gastric Mucosa , Gastritis , Helicobacter pylori , Immunoglobulins , Inflammation , Ovum , Oxidoreductases , Stomach , Stomach Ulcer , Urease
SELECTION OF CITATIONS
SEARCH DETAIL