Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Organ Transplantation ; (6): 649-655, 2023.
Article in Chinese | WPRIM | ID: wpr-987114

ABSTRACT

Eye organoid refers to a structure that possesses resembling cell types and functions to intraocular tissues, which is induced by stem cells in vitro. Transplanting it into the body for eye repair and regeneration is one of the key research directions in regenerative medicine, which also provides a novel direction and strategy for the treatment of major blinding diseases. As a carrier of biological tissue or cell growth, tissue engineering scaffold could support in vivo transplantation of eye organoids and promote their maturation. Organic combination of eye organoids and tissue engineering is a critical approach to realize in vivo integration of eye organoids and reconstruct corresponding structures and functions. In this review, the latest research status of eye organoids and in vivo transplantation were summarized, and relevant studies of tissue engineering scaffold-assisted eye organoid transplantation were highlighted, aiming to provide ideas and reference for subsequent inter-disciplinary research of eye organoids and tissue engineering.

2.
Journal of the Korean Association of Oral and Maxillofacial Surgeons ; : 304-309, 2009.
Article in Korean | WPRIM | ID: wpr-137104

ABSTRACT

PURPOSE: Fibrous dysplasia (FD) is a fibro-osseous disease associated with activating missense mutations of the gene encoding the alpha-subunit of stimulatory G protein. FD may affect a single bone (called monostotic form) or multiple bones (called polyostotic form). The extent of lesions reflects the onset time of mutation. In this study, cells from monostotic FD in maxilla of a patient were isolated and cultured in vitro for characterization. MATERIALS AND METHODS: The single cells were released from FD lesion which was surgical specimen from 15 years-old boy. These isolated cells were cultured in vitro and tested their proliferation activity with MTT assay. In osteogenic media, these cells underwent differentiation process comparing with its normal counterpart i.e. bone marrow stromal cells. The proliferated FD cells were detached and transplanted into the dordsal pocket of nude mouse and harvested in 6 weeks and 12 weeks. RESULTS AND SUMMARY: FD cells have an increased proliferation rate and poor differentiation. As a result, cells isolated from FD lesion decreased differentiation into osteoblast and increased proliferation capacity. MTT assay presented that proliferation rate of FD cells were higher than control. However, the mineral induction capacity of FD was lesser than that of control. Monostotic FD cells make fewer amounts of bone ossicles and most of them are woven bone rather than lamellar bone in vivo transplantation. In transplanted FD cells, hematopoietic marrow were not seen in the marrow space and filled with the organized fibrous tissue. Therefore, they were recapitulated to the original histological features of FD lesion. Collectively, these results indicated that the FD cells were shown that the increased proliferation and decreased differentiation potential. These in vitro and in vivo system can be useful to test FD cell's fate and possible


Subject(s)
Animals , Humans , Mice , Bone Marrow , Durapatite , GTP-Binding Proteins , Maxilla , Mesenchymal Stem Cells , Mice, Nude , Mutation, Missense , Osteoblasts , Transplants
3.
Journal of the Korean Association of Oral and Maxillofacial Surgeons ; : 304-309, 2009.
Article in Korean | WPRIM | ID: wpr-137097

ABSTRACT

PURPOSE: Fibrous dysplasia (FD) is a fibro-osseous disease associated with activating missense mutations of the gene encoding the alpha-subunit of stimulatory G protein. FD may affect a single bone (called monostotic form) or multiple bones (called polyostotic form). The extent of lesions reflects the onset time of mutation. In this study, cells from monostotic FD in maxilla of a patient were isolated and cultured in vitro for characterization. MATERIALS AND METHODS: The single cells were released from FD lesion which was surgical specimen from 15 years-old boy. These isolated cells were cultured in vitro and tested their proliferation activity with MTT assay. In osteogenic media, these cells underwent differentiation process comparing with its normal counterpart i.e. bone marrow stromal cells. The proliferated FD cells were detached and transplanted into the dordsal pocket of nude mouse and harvested in 6 weeks and 12 weeks. RESULTS AND SUMMARY: FD cells have an increased proliferation rate and poor differentiation. As a result, cells isolated from FD lesion decreased differentiation into osteoblast and increased proliferation capacity. MTT assay presented that proliferation rate of FD cells were higher than control. However, the mineral induction capacity of FD was lesser than that of control. Monostotic FD cells make fewer amounts of bone ossicles and most of them are woven bone rather than lamellar bone in vivo transplantation. In transplanted FD cells, hematopoietic marrow were not seen in the marrow space and filled with the organized fibrous tissue. Therefore, they were recapitulated to the original histological features of FD lesion. Collectively, these results indicated that the FD cells were shown that the increased proliferation and decreased differentiation potential. These in vitro and in vivo system can be useful to test FD cell's fate and possible


Subject(s)
Animals , Humans , Mice , Bone Marrow , Durapatite , GTP-Binding Proteins , Maxilla , Mesenchymal Stem Cells , Mice, Nude , Mutation, Missense , Osteoblasts , Transplants
4.
Korean Journal of Obstetrics and Gynecology ; : 1402-1411, 2005.
Article in Korean | WPRIM | ID: wpr-14111

ABSTRACT

OBJECTIVE: Human MSCs (hMSCs) have the potential to differentiate along different lineages. Despite their potential clinical utilities for cellular and gene therapy, the fate of MSCs derived from human cord blood (UBMSCs) after systemic administration is mostly unknown. In this study we cultured UBMSCs and investigated distribution of them injected into the intravenous routes. METHODS: By flow cytometry, we investigated whether MSCs from human umbilical cord blood have similar characteristics of MSCs. In addition we induced those cells into the osteocyte and adipocyte to determine the characteristics of MSCs. UBMSCs were marked by transfection with LacZ-adeno virus and distribution of the injected cells were examined by x-gal staining in immuno-deficient mice. RESULTS: Umbilical cord blood-derived mononuclear cells, when set in culture, gave rise to adherent cells. Preterm, as compared with term pregnancy, cord blood is richer in MSCs. UBMSCs expressed several MSCs-related antigen (CD29 and CD44). Under appropriate culture conditions, UBMSCs were induced to differentiate to the osteocyte, and adipocyte lineages. UBMSCs were engrafted into various tissues after intravenous administration. When UBMSCs were transplanted into the distant site from cryogenic injury of mice brain, cells were preferentially migrated into the injured area. CONCLUSION: These results demonstrate that UBMSCs have the ability to proliferate extensively in culture, and they maintain their multi-lineage differentiation potential in vitro, and that they can integrate into various tissues after transplantation and migrate to injured area. Therefore, UBMSCs are promising candidates for developing cell-based therapeutic approaches for postnatal tissue repair.


Subject(s)
Animals , Humans , Mice , Pregnancy , Adipocytes , Administration, Intravenous , Brain , Fetal Blood , Flow Cytometry , Genetic Therapy , Mesenchymal Stem Cells , Osteocytes , Transfection , Umbilical Cord
SELECTION OF CITATIONS
SEARCH DETAIL