Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
Rev. argent. microbiol ; 55(3): 4-4, Oct. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1529619

ABSTRACT

Resumen Muchos de los hongos degradadores de madera están implicados en la síntesis de metabolitos bioactivos de naturaleza antimicrobiana y terapéutica, así como de compuestos de importancia biotecnológica, incluyendo derivados indólicos, entre otros. Estos hongos brindan ciertos beneficios ecológicos a las plantas, entre los que se destacan la protección contra fitopatógenos y la promoción del crecimiento radicular. Xylaria sp. es un hongo degradador de celulosa (lignocelulolítico) con potencial biotecnológico. El ácido indol-3-acético (AIA) desempeña un papel sumamente importante en las interacciones planta-microorganismo, ya que es esencial para la fisiología y el correcto desarrollo morfológico vegetal. Se sabe que las enzimas nitrilo-hidrolíticas (nitrilasas) están involucradas en la síntesis de compuestos indólicos en las plantas, no obstante, se dispone de poca información acerca de la naturaleza de estas enzimas en el reino de los hongos. A través de una aproximación bioquímica y de genética molecular, se demuestra por primera vez que Xylaria sp. posee actividad enzimática nitrilasa utilizando compuestos ricos en nitrógeno y carbono como sustrato. La cepa estudiada aumentó sus niveles de expresión génica relativa y mostró crecimiento micelial, ambos en presencia de compuestos químicos como cianobenceno y KCN. Los resultados de este trabajo sugieren que el microorganismo es capaz de degradar moléculas nitrogenadas complejas. Por otra parte, mediante biofertilización con extractos fúngicos, se observó que Xylaria sp. promueve el desarrollo del sistema radicular de plántulas de Arabidopsis thaliana, además de sintetizar AIA.


Abstract Endophytic fungi inhabit plant tissues internally and asymptomatically, and many of them are involved in the synthesis of bioactive metabolites of antifungal and therapeutic nature, as well as other compounds of biotechnological importance including indole derivatives, among many others. Ecologically, they provide some benefits to plants including protection against phy-topathogens and promotion of root growth. In this sense, Xylaria sp. is a cellulose-decomposing fungus with biotechnological potential. It is worth mentioning that indole-3-acetic acid (IAA) also plays an extremely important role in plant-micro-organism interactions, as it is essential for physiology and proper plant morphological development. It is known that nitrile-hydrolytic enzymes (nitrilases) are involved in the synthesis of plant indole compounds; however, relatively little information is available concerning the nature of these enzymes in the fungal kingdom. In view of the above, through a biochemical and molecular-genetic approach, it has been demon-strated for the first time that Xylaria sp. carries out nitrile-hydrolytic enzyme activity using nitrogen and carbonrich compounds as substrate. The studied strain increased its relative gene expression levels and showed mycelial growth, both in the presence of chemical compounds such as cyanobenzene and KCN. Thus, the results of this work suggest that the micro-organism is capable of degrading complex nitrogenous molecules. On the other hand, through fungal biofertilization, it was observed that Xylaria sp. promotes the development of the root system of Arabidopsis thaliana seedlings, in addition to synthesizing IAA.

2.
Chinese Journal of Primary Medicine and Pharmacy ; (12): 635-640, 2023.
Article in Chinese | WPRIM | ID: wpr-991797

ABSTRACT

Pyrrole [1,2-α] indole is a novel fused heterocyclic skeleton, which is also the basic structural unit and synthetic intermediate of many natural active products and drugs. Pyrrole [1,2-α] indole heterocyclic derivatives have attracted much attention in organic synthesis and medicinal chemistry because of their extensive and marked biological activities. Plant extracts have always been an important source of active compounds. At present, the alkaloids based on the pyrrole [1,2-α] indole heterocyclic structure discovered and isolated from plant extracts include isatisine, isoborreverine, flinderoles, polyavolensin and yuremamine. This paper reviews the research progress on the biological activity of pyrrole [1,2-α] indole heterocyclic derivatives and has found that pyrrole [1,2-α] indole heterocyclic derivatives have a good development prospect in screening active compounds and developing candidate drugs.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 126-132, 2023.
Article in Chinese | WPRIM | ID: wpr-962632

ABSTRACT

ObjectiveTo preliminarily predict the targets and signaling pathways of indole-3-methanol in the treatment of obesity based on molecular docking technology and network pharmacology, and then verify the prediction results by the experiment in vitro. MethodThe pharmacological targets of indole-3-methanol were obtained from SwissTargetPrediction and literature review. Obesity-related targets were obtained from Online Mendelian Inheritance in Man (OMIM), GeneCards, and Comparative Toxicogenomics Database (CTD). The protein-protein interaction network of the targets of indole-3-methanol and obesity was built by STRING. Cytoscape 3.8.2 was used for target screening. Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed for the common targets shared by obesity and indole-3-methanol in DAVID 6.8. AutoDock Vina 1.1.2 was employed to perform the molecular docking between indole-3-methanol and disease targets. Finally, the in vitro experiment was carried out to verify the anti-obesity effect of indole-3-methanol. ResultIndole-3-methanol and obesity shared 80 common targets, which included matrix metalloproteinase (MMP)-9, Janus kinase (JAK) 2, etc. KEGG enrichment predicted that indole-3-methanol mainly acted on tumor necrosis factor (TNF), vascular endothelial growth factor (VEGF), tyrosine kinase receptor 2 (ErbB2), and epidermal growth factor receptor (EGFR) signaling pathways in the treatment of obesity. Molecular docking showed that indole-3-methanol had good binding activity with fat mass and obesity-associated protein (FTO). The results of Western blot, MTT assay, and oil-red O staining showed that indole-3-methanol down-regulated the expression of FTO in 3T3-L1 cells (P<0.05). ConclusionIndole-3-methanol may treat obesity by down-regulating the expression of FTO protein and further inhibiting adipocyte proliferation. This study provides an experimental basis for deciphering the anti-obesity mechanism of indole-3-methanol.

4.
STOMATOLOGY ; (12): 204-211, 2023.
Article in Chinese | WPRIM | ID: wpr-979348

ABSTRACT

Objective@#To investigate the mechanism of vascular endothelial growth factor(VEGF) inducing tolerogenic dendritic cells(DCs) in oral squamous cell carcinoma (OSCC).@*Methods@#The DCs were divided into four groups: Control group (DC), VEGF group (VEGF added into DC), Co-culture group (DC co-cultured with SCC7) and Anti-VEGF group (anti-VEGF antibody added into DC co-cultured with SCC7). Flow cytometry (FCM) was used to detect DC surface markers. To detect the effect of DC on proliferation activity of T lymphocyte, the experiment included five groups: Nc group (T lymphocyte), Control group (T lymphocyte added into DC), VEGF group (T lymphocyte + DC + VEGF), Co-culture group (T lymphocyte + DC + supernatant of SCC7) and Anti-VEGF group (T lymphocyte + DC + supernatant of SCC7 + anti-VEGF antibody). Subsequently, the mixed lymphocyte reaction(MLR) was conducted. The expression levels of indole-2, 3-doxygenase(IDO)and programmed cell death 1 ligand 1(PD-L1)in DC were detected by western blot, real time PCR and FCM respectively. For the cytotoxic lymphocyte (CTL) assay, SCC7 cells and CTLs were mixed and CTL-mediated SCC7 cells cytotoxicity was tested. The experiment included four groups: Control group (T lymphocyte + DC), IDO inhibition group (T lymphocyte + DC + IDO inhibitor), Anti-PD-L1 antibody group (T lymphocyte + DC + anti-PD-L1 antibody) and Combination group (T lymphocyte + DC + IDO inhibitor + anti-PD-L1 antibody). The SCC7 tumor-bearing mice treated with IDO inhibitor and the anti-PD-L1 antibody were sacrificed and the tumor inhibition rate and the spleen index were determined. @*Results@#Compared with Control group, exogenous VEGF or SCC7 co-culture inhibited the relative number of DC expressing CD11C, CD80, CD86, CD40 and MHC Ⅱ. The positive DCs were increased in the Anti-VEGF group compared with VEGF or Co-culture group. In VEGF or Co-culture group, the number of T cells stimulated by SCC7-pulsed DCs was decreased compared with Control group. However, the ability of Anti-VEGF group to induce T cell proliferation was significantly increased compared with VEGF or Co-culture group. Significantly increased expression of IDO and PD-L1 were observed in VEGF and Co-culture group. However, this was partially reversed by addition of anti-VEGF antibody into the co-culture system. Compared with Control group, the expressions of CD11C and CD86 in DC in both the IDO inhibition group and Anti-PD-L1 antibody group were increased, and were significantly higher in the Combination group compared with the single drug groups. The similar results were exhibited in MLR and CTL assay. In vivo, the results revealed that the tumors obtained from the mice in three experimental groups were smaller than those in the control group. Furthermore, the tumor volume of the Combination group was the smallest. The spleen index of each group was calculated and the results showed the spleen index of the three experimental groups was significantly higher than that of Control group.@*Conclusion@#VEGF in OSCC micro-environment inhibits the maturation and function of DC that are transformed into tolerogenic DC by high expression of IDO and PD-L1.

5.
China Pharmacy ; (12): 941-945, 2023.
Article in Chinese | WPRIM | ID: wpr-972264

ABSTRACT

OBJECTIVE To evaluate the quality of Indigo Naturalis, and to provide reference for the quality control of Indigo Naturalis. METHODS UPLC-MS/MS method was used to determine the contents of 6 indole alkaloids (indigo, indirubin, isatin, tryptanthrin, indole and indole-3-carboxaldehyde) in Indigo Naturalis from different origins. Cluster analysis, principal component analysis and partial least squares-discriminant analysis (PLS-DA) were used to evaluate the quality of Indigo Naturalis from different origins. RESULTS The contents of indigo, indirubin, isatin, tryptanthrin, indole and indole-3-carboxaldehyde in Indigo Naturalis from different origins were 20 320.83-26 585.01, 1 327.69-3 102.25, 141.69-894.50, 2.17-5.27, 2.14-5.93 and 1.69-4.34 μg/g, respectively. The Indigo Naturalis from different areas were clustered into two categories by cluster analysis. Samples S1, S2, S4, S6, S7, S9 and S10 were clustered into category Ⅰ, and samples S3, S5, S8, S11 and S12 were clustered into category Ⅱ. Indigo Naturalis from different origins was evaluated with 3 principal components. The results showed that category Ⅰ sample scored higher and had better quality, while category Ⅱ sample scored lower and had worse quality. PLS-DA showed that indigo, indirubin, tryptanthrin and isatin were the main substances that reflected the quality difference of Indigo Naturalis. CONCLUSIONS The quality of Indigo Naturalis from different origins is different, and the quality of Indigo Naturalis of different batches from the same area is not stable. The quality evaluation method of Indigo Naturalis established in this paper is stable and reliable, which can provide a basis for the quality control of Indigo Naturalis.

6.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 146-153, 2023.
Article in English | WPRIM | ID: wpr-971669

ABSTRACT

Four unreported monoterpene indole alkaloids, tabernaecorymines B-E (1-4), together with twenty-one known indole alkaloids (5-25) were obtained from the stem bark of Tabernaemontana corymbosa. Their structures and absolute configurations were elucidated by extensive spectroscopy, quantum chemical calculations, DP4+ probability analyses and Mo2(OAc)4-induced electronic circular dichroism experiment. The antibacterial and antifungal activities of these compounds were evaluated and some of them showed significant activity against Staphylococcus aureus,Bacillus subtilis, Streptococcus dysgalactiae and Candida albicans.


Subject(s)
Tabernaemontana , Anti-Infective Agents , Antifungal Agents , Anti-Bacterial Agents , Indole Alkaloids
7.
Chinese Journal of Biotechnology ; (12): 286-303, 2023.
Article in Chinese | WPRIM | ID: wpr-970375

ABSTRACT

Gelsemium elegans is a traditional Chinese herb of medicinal importance, with indole terpene alkaloids as its main active components. To study the expression of the most suitable housekeeping reference genes in G. elegans, the root bark, stem segments, leaves and inflorescences of four different parts of G. elegans were used as materials in this study. The expression stability of 10 candidate housekeeping reference genes (18S, GAPDH, Actin, TUA, TUB, SAND, EF-1α, UBC, UBQ, and cdc25) was assessed through real-time fluorescence quantitative PCR, GeNorm, NormFinder, BestKeeper, ΔCT, and RefFinder. The results showed that EF-1α was stably expressed in all four parts of G. elegans and was the most suitable housekeeping gene. Based on the coexpression pattern of genome, full-length transcriptome and metabolome, the key candidate targets of 18 related genes (AS, AnPRT, PRAI, IGPS, TSA, TSB, TDC, GES, G8H, 8-HGO, IS, 7-DLS, 7-DLGT, 7-DLH, LAMT, SLS, STR, and SGD) involved in the Gelsemium alkaloid biosynthesis were obtained. The expression of 18 related enzyme genes were analyzed by qRT-PCR using the housekeeping gene EF-1α as a reference. The results showed that these genes' expression and gelsenicine content trends were correlated and were likely to be involved in the biosynthesis of the Gelsemium alkaloid, gelsenicine.


Subject(s)
Genes, Essential , Gelsemium/genetics , Peptide Elongation Factor 1/genetics , Transcriptome , Gene Expression Profiling/methods , Alkaloids , Real-Time Polymerase Chain Reaction/methods , Reference Standards
8.
Braz. J. Pharm. Sci. (Online) ; 59: e21770, 2023. tab, graf
Article in English | LILACS | ID: biblio-1439547

ABSTRACT

Abstract The locust bean gum (LBG) is a polysaccharide with thickening, stabilizing and gelling properties and it has been used in the preparation of pharmaceutical formulations. Hydrogels (HGs) are obtained from natural or synthetic materials that present interesting properties for skin application. This study aimed to develop HGs from LBG using indole-3-carbinol (I3C) as an asset model for cutaneous application. HGs were prepared by dispersing LBG (2%, 3% and 4% w/v) directly in cold water. The formulations showed content close to 0.5 mg/g (HPLC) and pH ranging from 7.25 to 7.41 (potentiometry). The spreadability factor (parallel plate method) was inversely proportional to LBG concentration. The rheological evaluation (rotational viscometer) demonstrated a non-Newtonian pseudoplastic flow behavior (Ostwald De Weale model), which is interesting for cutaneous application. The HET-CAM evaluation showed the non-irritating characteristic of the formulations. The bioadhesive potential demonstrated bioadhesion in a concentration-dependent manner. Permeation in human skin using Franz cells showed that the highest LBG concentration improved the skin distribution profile with greater I3C amounts in the viable skin layers. The present study demonstrated the feasibility of preparing HGs with LBG and the formulation with the highest polymer concentration was the most promising to transport active ingredients through the skin.


Subject(s)
Polysaccharides/analysis , Rubber/analysis , Hydrogels/analysis , Potentiometry/instrumentation , Pharmaceutical Preparations/administration & dosage , Chromatography, High Pressure Liquid/methods , Skin Cream/classification
9.
Journal of Forensic Medicine ; (6): 457-464, 2023.
Article in English | WPRIM | ID: wpr-1009378

ABSTRACT

OBJECTIVES@#To establish the GC-MS qualitative and quantitative analysis methods for the synthetic cannabinoids, its main matrix and additives in suspicious electronic cigarette (e-cigarette) oil samples.@*METHODS@#The e-cigarette oil samples were analyzed by GC-MS after diluted with methanol. Synthetic cannabinoids, its main matrix and additives in e-cigarette oil samples were qualitatively analyzed by the characteristic fragment ions and retention time. The synthetic cannabinoids were quantitatively analyzed by using the selective ion monitoring mode.@*RESULTS@#The linear range of each compound in GC-MS quantitative method was 0.025-1 mg/mL, the matrix recovery rate was 94%-103%, the intra-day precision relative standard deviations (RSD) was less than 2.5%, and inter-day precision RSD was less than 4.0%. Five indoles or indazole amide synthetic cannabinoids were detected in 25 e-cigarette samples. The main matrixes of e-cigarette samples were propylene glycol and glycerol. Additives such as N,2,3-trimethyl-2-isopropyl butanamide (WS-23), glycerol triacetate and nicotine were detected in some samples. The content range of synthetic cannabinoids in 25 e-cigarette samples was 0.05%-2.74%.@*CONCLUSIONS@#The GC-MS method for synthesizing cannabinoid, matrix and additive in e-cigarette oil samples has good selectivity, high resolution, low detection limit, and can be used for simultaneous qualitative and quantitative analysis of multiple components; The explored fragment ion fragmentation mechanism of the electron bombardment ion source of indole or indoxamide compounds helps to identify such substances or other compounds with similar structures in cases.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Electronic Nicotine Delivery Systems , Illicit Drugs/analysis , Indazoles/chemistry , Glycerol/analysis , Cannabinoids , Indoles/chemistry , Ions
10.
China Journal of Chinese Materia Medica ; (24): 4552-4568, 2023.
Article in Chinese | WPRIM | ID: wpr-1008624

ABSTRACT

Bufonis Venenum, an animal medicinal material, is widely used for treating cardiovascular diseases and pain induced by rheumatics or malignant tumors. In view of the high activity and high toxicity, it is of great significance to pay attention to the quality control of Bufonis Venenum to ensure the safety and effectiveness of its preparations. China's drug standards involve 102 preparations(474 batch numbers) containing Bufonis Venenum approved for sale, including 14 preparations in the Chinese Pharmacopoeia(2020 edition) and 68 preparations in the standards issued by the Ministry of Health Drug Standard of the People's Republic of China. Bufonis Venenum is mostly used in pill and powder preparations in the form of raw powder, with the main functions of clearing heat, removing toxin, relieving swelling and pain, replenishing qi, activating blood, opening orifice, and awakening brain. Except the high level of quality control for Bufonis Venenum in the preparations in the Chinese Pharmacopoeia(2020 edition), the quality control standards of Bufonis Venenum in other preparations are low or even absent. Therefore, it is urgent to conduct research on the improvement of quality standards for the preparations containing Bufonis Venenum. This study retrieved the reports focusing on the quality evaluation and quality control of the preparations containing Bufonis Venenum from CNKI, PubMed, and Web of Science. Qualitative and quantitative analysis methods for 64 preparations containing Bufonis Venenum have been reported, mainly including thin-layer chromatography, HPLC fingerprint, and multi-component content determination. The index components mainly involved bufadienolides, such as gamabufalin, arenobufagin, bufotalin, bufalin, cinobufagin, and resibufogenin. According to the literature information, this paper suggests that attention should be paid to the correlations between the analysis methods and detection indexes of medicinal materials, decoction pieces and preparations, the monitoring of indole alkaloids, and the content uniformity inspection for further improving the quality standards for the preparations containing Bufonis Venenum.


Subject(s)
Animals , Humans , Bufonidae , Powders , Bufanolides/pharmacology , Quality Control , Chromatography, High Pressure Liquid , Pain/drug therapy
11.
Malaysian Journal of Microbiology ; : 629-639, 2022.
Article in English | WPRIM | ID: wpr-988260

ABSTRACT

Aims@#The objective of this study was to analyze the genome of endophytic actinomycete associated with orchids and evaluate its plant hormone activities, including phytohormone, siderophore, ammonia production, zinc and phosphate solubilization.@*Methodology and results@#Strain DR1-2 isolated from the roots of the Thai orchid, Dendrobium christyanum Rchb.f., was closely related to Pseudonocardia alni DSM 44104T, P. antarctica DSM 44749T and P. carboxydivorans Y8T (99.93-100% similarity) based 16S rRNA gene sequence. This strain exhibited IAA production (294.10 ± 12.17 μg/mL), phosphate solubilization (2.20 ± 0.08 solubilization Index, SI), positive for siderophore production and ammonia production (36.99 ± 2.24 μg/mL). It showed a maximum IAA of 489.73 ± 8.90 μg/mL, when optimized using 0.5% Ltryptophan, pH 6 and incubated at 30 °C for 7 days. The IAA of strain enhanced the root length, shoot length, number of roots and fresh weight of rice seedlings (Oryza sativa L. cv. RD49). The draft genome of strain DR1-2 was 6,077,423 bp in 23 contigs with G+C content of 74.6%. The average nucleotide identity-Blast (ANIb) and average nucleotide identity-MUMmer (ANIm) values of strain DR1-2 and related type strains were 95.81 to 97.25% and the digital DNA-DNA hybridization (dDDH) values were 72.60 to 74.00%, respectively. Genomic analysis of strain DR1-2 revealed that the gene encodes the enzyme involved in the phytohormones biosynthesis and gene clusters involved in the biosynthesis of bioactive metabolites.@*Conclusion, significance and impact of study@#Endophytic actinomycete, Pseudonocardia strain DR1-2 from Thai orchid, D. christyanum Rchb.f., exhibited significant IAA production and affected the growth of the plant, which was the potential source of plant hormones for agricultural applications.


Subject(s)
Endophytes , Actinobacteria , Pseudonocardia
12.
Journal of Pharmaceutical Analysis ; (6): 301-307, 2022.
Article in Chinese | WPRIM | ID: wpr-931258

ABSTRACT

Indole-3-carbinol(I3C),an important anticancer compound found in broccoli,has attracted considerable attention.The rapid extraction and accurate analysis of I3C in the pharmaceutical industry in broccoli is challenging as I3C is unstable at low pH and high temperature.In this study,a rapid,accurate,and low-cost ultrasound-assisted dispersive-filter extraction(UADFE)technique based on poly(deep eutectic solvent)-graphene oxide(PDES-GO)adsorbent was developed for the isolation and analysis of I3C in broccoli for the first time.PDES-GO with multiple adsorption interactions and a fast mass transfer rate was synthesized to accelerate adsorption and desorption.UADFE was developed by combining dispersive solid-phase extraction(DSPE)and filter solid-phase extraction(FSPE)to realize rapid extraction and separation.Based on the above two strategies,the proposed PDES-GO-UADFE method coupled with high-performance liquid chromatography(HPLC)allowed the rapid(15-16 min),accurate(84.3%-96.4%),and low-cost(adsorbent:3.00 mg)analysis of I3C in broccoli and was superior to solid-phase extraction,DSPE,and FSPE methods.The proposed method showed remarkable linearity(r=0.9998;range:0.0840-48.0 μg/g),low limit of quantification(0.0840 μg/g),and high precision(relative standard deviation≤5.6%).Therefore,the PDES-GO-UADFE-HPLC method shows significant potential in the field of pharmaceutical analysis for the separation and analysis of anti-cancer compounds in complex plant samples.

13.
Malaysian Journal of Microbiology ; : 315-321, 2022.
Article in English | WPRIM | ID: wpr-979310

ABSTRACT

Aims@#Plant growth-promoting bacteria are the key components of a biofertilizer. This study was aimed to isolate and identify the predominant bacteria found in a foliar biofertilizer and characterizes the potential of the bacterial isolates as plant growth promoters.@*Methodology and results@#Potential bacteria with plant growth-promoting activities were isolated from a foliar biofertilizer on HiCrome™ Bacillus agar and Nutrient agar. Bacteria with unique colonial morphology were selected and categorized by Gram’s differential staining. Subsequently, the bacterial isolates were being further characterized for plant growth-promoting potentials, such as the production of indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and siderophore; as well as the ability of nitrogen fixation and phosphate/potassium solubilization. Based on the characterized traits, three bacterial isolates, namely M17, M22 and M52 showed great potential for being a plant growth promoter. Based on their 16S rRNA gene sequence analysis, M17, M22 and M52 were identified as Leclercia adecarboxylata, Margalitia shackletonii and Lysinibacillus pakistanensis, respectively.@*Conclusion, significance and impact of study@#Bacterial isolates exhibiting plant growth-promoting activities were successfully isolated from a biofertilizer and identified in this study. This finding provides an insight into the potential bacteria of a foliar fertilizer that may promote plant growth. Identification of these plant-growth promoters may help the scientists and agrochemical manufacturers to determine and disclose the key microorganisms of their biofertilizers, thereby contributing to the improvement of biofertilizers and promoting them as reliable alternatives to chemical fertilizers.

14.
Acta Pharmaceutica Sinica ; (12): 2864-2875, 2022.
Article in Chinese | WPRIM | ID: wpr-941509

ABSTRACT

WRKY, a class of conserved transcription factors in plants, plays important roles in plant growth, development and secondary metabolism. In the present study, 65 WRKY members were identified from de novo transcriptome sequencing data of three different tissues (root, stems and leaves) of Baphicacanthus cusia. BcWRKY proteins contained from 221 to 706 amino acids and the isoelectric point is from 4.68 to 9.68. Molecular weights range from 25 711.8 to 75 475 Da. The main secondary structures of BcWRKYs protein are random coil. A subcellular localization prediction indicated that the putative BcWRKY proteins were enriched in the nuclear region. Phylogenetic analysis showed that BcWRKYs could be categorized into three groups and five subgroups (Group IIa, Group IIb, Group IIc, Group IId and Group IIe) in Group II. Structural analysis found that all BcWRKY proteins contained a highly conserved motif WRKYGQK. Finally, the transcriptional profiles of ten BcWRKY genes highly expressed in root, stem and leaf tissues under abscisic acid (ABA), methyl jasmonate (MeJA), or salicylic acid (SA) treatment were systematically investigated using qRT-PCR analysis. Results showed that a total of ten BcWRKY genes were differentially expressed in response to ABA, MeJA, and SA treatment. This work would be provided a basis for further elucidating the molecular mechanism of WRKY transcription factors in the biosynthesis of indole alkaloids in B. cusia.

15.
Acta Pharmaceutica Sinica B ; (6): 3006-3027, 2022.
Article in English | WPRIM | ID: wpr-939948

ABSTRACT

Cancer, which is the uncontrolled growth of cells, is the second leading cause of death after heart disease. Targeting drugs, especially to specific genes and proteins involved in growth and survival of cancer cells, is the prime need of research world-wide. Indole moiety, which is a combination of aromatic-heterocyclic compounds, is a constructive scaffold for the development of novel leads. Owing to its bioavailability, high unique chemical properties and significant pharmacological behaviours, indole is considered as the most inquisitive scaffold for anticancer drug research. This is illustrated by the fact that the U.S. Food and Drug Administration (FDA) has recently approved several indole-based anticancer agents such as panobinostat, alectinib, sunitinib, osimertinib, anlotinib and nintedanib for clinical use. Furthermore, hundreds of studies on the synthesis and activity of the indole ring have been published in the last three years. Taking into account the facts stated above, we have presented the most recent advances in medicinal chemistry of indole derivatives, encompassing hot articles published between 2018 and 2021 in anticancer drug research. The recent advances made towards the synthesis of promising indole-based anticancer compounds that may act via various targets such as topoisomerase, tubulin, apoptosis, aromatase, kinases, etc., have been discussed. This review also summarizes some of the recent efficient green chemical synthesis for indole rings using various catalysts for the period during 2018-2021. The review also covers the synthesis, structure‒activity relationship, and mechanism by which these leads have demonstrated improved and promising anticancer activity. Indole molecules under clinical and preclinical stages are classified into groups based on their cancer targets and presented in tabular form, along with their mechanism of action. The goal of this review article is to point the way for medicinal chemists to design and develop effective indole-based anticancer agents.

16.
Acta Pharmaceutica Sinica ; (12): 433-440, 2022.
Article in Chinese | WPRIM | ID: wpr-922936

ABSTRACT

Three tricyclic [6,5,7] and six tetracyclic [6,5,5,5] novel indole alkaloids were synthesized and evaluated on triglyceride inhibitory activities for the first time. Among them, compound 4c showed the most potent activity with IC50 value of 6.35 μmol·L-1. Meanwhile, compound 4c also exhibited a good safety profile at the cellular level. Preliminary mechanism study indicated that 4c might increase intracellular lipid metabolism by activating AMPK. These results provide a novel family of lead compounds for the discovery of anti-NAFLD candidates.

17.
Arq. Inst. Biol. (Online) ; 89: e00162021, 2022. ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1416879

ABSTRACT

Endophytic bacteria Bacillus safensis RS95 and Pseudomonas hibiscicola RS121 were evaluated for their ability to promote the growth of rice seedlings and produce indole-acetic acid (IAA) and siderophores and to solubilize phosphates. 'Guri' rice seeds were immersed in bacterial endophyte cell suspensions (separated and two-strain mixed), as well as in Escherichia coli DH5α, phosphate-buffered saline (PBS) and water treatments (negative controls). Seeds were sown on agar-water in Petri plates placed vertically at an angle of 65°. The ability of plant growth-promoting endophytic bacteria (PGPEB) to produce IAA and siderophores was determined by Salkowski colorimetric and chrome azurol S (CAS) assays, respectively. Mineral phosphate solubilization activity was calculated by inoculating the endophytes onto medium containing insoluble phosphate. PGPEB showed a positive effect on the growth of rice seedlings, causing a mean growth of shoots and primary-roots of 60 and 67%, respectively. Bacterial strains also showed positive traits for IAA and siderophore production, as well as phosphate-solubilization activity


Subject(s)
Pseudomonas , Oryza/growth & development , Bacillus , Siderophores , Endophytes , Indoleacetic Acids/analysis , Phosphates
18.
Acta Pharmaceutica Sinica B ; (6): 1406-1415, 2022.
Article in English | WPRIM | ID: wpr-929363

ABSTRACT

We have discovered and synthesized a series of indole-based derivatives as novel sigma-2 (σ 2) receptor ligands. Two ligands with high σ 2 receptor affinity and subtype selectivity were then radiolabeled with F-18 in good radiochemical yields and purities, and evaluated in rodents. In biodistribution studies in male ICR mice, radioligand [18F]9, or 1-(4-(5,6-dimethoxyisoindolin-2-yl)butyl)-4-(2-[18F]fluoroethoxy)-1H-indole, was found to display high brain uptake and high brain-to-blood ratio. Pretreatment of animals with the selective σ 2 receptor ligand CM398 led to significant reductions in both brain uptake (29%-54%) and brain-to-blood ratio (60%-88%) of the radioligand in a dose-dependent manner, indicating high and saturable specific binding of [18F]9 to σ 2 receptors in the brain. Further, ex vivo autoradiography in male ICR mice demonstrated regionally heterogeneous specific binding of [18F]9 in the brain that is consistent with the distribution pattern of σ 2 receptors. Dynamic positron emission tomography imaging confirmed regionally distinct distribution and high levels of specific binding for [18F]9 in the rat brain, along with appropriate tissue kinetics. Taken together, results from our current study indicated the novel radioligand [18F]9 as the first highly specific and promising imaging agent for σ 2 receptors in the brain.

19.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 74-80, 2022.
Article in English | WPRIM | ID: wpr-929238

ABSTRACT

Diversity-oriented synthesis is aimed to increase the chemical diversity of target natural products for extensive biological activity evaluation. Indole ring is an important functional group in a large number of drugs and other biologically active agents, and indole-containing natural products have been frequently isolated from marine sources in recent years. In this paper, a series of indole-containing marine natural hyrtioreticulin derivatives, including 19 new ones, were designed, synthesized through a key Pictet-Spengler reaction, and evaluated for their inflammation related activity. Compound 13b displayed the most promising activity by inhibiting TNF-α cytokine release with an inhibitory rate of 92% at a concentration of 20 μmol·L-1. A preliminary structure-activity relationship analysis was also discussed. This research may throw light on the discovery of marine indole alkaloid derived anti-inflammatory drug leads.


Subject(s)
Animals , Anti-Inflammatory Agents/pharmacology , Biological Products/pharmacology , Indole Alkaloids/pharmacology , Porifera , Structure-Activity Relationship
20.
Acta biol. colomb ; 26(2): 196-206, mayo-ago. 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1355531

ABSTRACT

ABSTRACT In the present study, 62 endophytic bacterial strains of cedar seeds (Cedrela odorata L.), collected in the municipalities of Huehuetán, Motozintla, and Pijijiapan in the state of Chiapas, Mexico were isolated. The goal was to identify characteristics of biotechnological interest such as biocontrol, promotion ofplant growth, and growth in aromatic compounds. The strains were identified by the partial sequence of the 16S ribosomal gene as belonging to the Bacillus genus. The biocontrol capacity of phytopathogenic fungi, production of indoleacetic acid (IAA), solubilization of phosphate, and growth in xenobiotic compounds (phenanthrene, benzene, anthracene, or phenol) were detected in 26 strains of the 62 isolates. 21 % of the strains inhibited the mycelial growth of Alternaria solani and Fusarium sp., and 13 % of the Phytophthora capsici oomycete. IAA production was detected in 24 isolates, phosphate solubilizing activity was identified in 18 isolates, while the ability to grow in the presence of phenanthrene and benzene was found in 26 isolates; 24 isolates grew in the presence of anthracene and only two isolates grew in phenol as the only carbon sources. This is the first report of the isolation and identification of endophytic bacteria from cedar seeds, where biotechnological characteristics were detected for biological control, promotion of plant growth, and growth in the presence of xenobiotic compounds.


RESUMEN En el presente estudio se aislaron 62 cepas bacterianas endófitas de semillas de cedro (Cedrela odorata L.) colectadas en los municipios de Huehuetán, Motozintla y Pijijiapan en el estado de Chiapas, México, con el objetivo de identificar características de interés biotecnológicas como biocontrol, promoción del crecimiento vegetal y crecimiento en compuestos aromáticos. Las cepas se identificaron por la secuencia parcial del gen 16S ribosomal como pertenecientes al género Bacillus. En 26 cepas de las 62 aisladas se detectaron la capacidad de biocontrol de hongos fitopatógenos, la producción de ácido indolacético (AIA), la solubilización de fosfato y el crecimiento en compuestos xenobióticos (fenantreno, benceno, antraceno o fenol). El 21 % de las cepas inhibió el crecimiento miceliar de Alternaria solani y Fusarium sp., y el 13 % del oomiceto Phytophthora capsici. La producción de ácido indolacético se detectó en 24 aislados y la actividad solubilizadora de fosfato se encontró en 18 aislados, mientras que la capacidad de crecer en presencia de fenantreno y benceno se manifestó en 26 aislados (24 aislados crecieron en presencia de antraceno y solo dos aislados crecieron en fenol como únicas fuentes de carbono). Es importante mencionar que este es el primer reporte del aislamiento e identificación de bacterias endófitas de semillas de cedro, en el que se detectaron características biotecnológicas para el control biológico, la promoción del crecimiento vegetal y el crecimiento en presencia de compuestos xenobióticos.

SELECTION OF CITATIONS
SEARCH DETAIL