Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Eng. sanit. ambient ; 25(2): 403-412, mar.-abr. 2020. tab, graf
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1098212

ABSTRACT

RESUMO Água do mar é comumente utilizada como fluido de injeção em plataformas offshore na recuperação secundária do petróleo. Porém, a presença de sulfato causa diversos inconvenientes, como a formação de precipitados, que podem se depositar em diversas partes da plataforma de produção. Atualmente, a dessulfatação é realizada em unidades removedoras de sulfato (URS) por processo de nanofiltração (NF), cujas amostras precisam ser pré-tratadas, usualmente em filtros cartuchos. Os sólidos suspensos e os microrganismos que não foram retidos pelo sistema de filtração podem depositar sobre a superfície das membranas de NF, diminuindo a produtividade do sistema e reduzindo o tempo de vida das membranas. O processo de microfiltração (MF) pode ser utilizado como pré-tratamento alternativo e possibilitaria a remoção desses elementos. Neste estudo, foi desenvolvido um processo combinado de MF e NF para a dessulfatação da água do mar, visando a sua injeção em reservatórios de petróleo. Módulos de permeação contendo membranas de poli(imida) no formato de fibras ocas foram utilizados na construção de um sistema piloto de MF integrado a um sistema piloto de NF similar aos já atualmente utilizados nas plataformas. O desempenho dos sistemas foi avaliado por meio do acompanhamento da permeabilidade de ambos durante a filtração da água do mar. Parâmetros como grau de recuperação de água, frequência e eficiência de procedimentos de retrolavagem e limpeza química também foram estudados. Os resultados demonstraram que o pré-tratamento da água do mar por MF é uma alternativa eficaz para a dessulfatação por NF.


ABSTRACT Seawater is commonly used in offshore platforms as an injection fluid in secondary oil recovery. However, the sulfate found in seawater has been the cause of many inconveniences, such as the formation of precipitates, which can settle in various parts of the production platform. Nowadays, nanofiltration (NF) is used in sulfate removal units for seawater desulfation, where cartridge filters are commonly used for seawater pretreatment. Suspended solids and microorganisms that have not been retained by the filtration system may deposit on the surface of NF membranes, decreasing system productivity and reducing membrane life. The microfiltration (MF) process can be used as an alternative pretreatment and would allow the removal of these elements. In this study, a combined process of MF and NF for seawater desulfation was developed for injection into oil reservoirs. Permeation modules containing hollow fiber shaped poly (imide) membranes were used in the construction of an MF pilot system, integrated with an NF pilot system similar to those already used on platforms. The performance of the systems was evaluated by monitoring the permeability of both during seawater filtration. Parameters such as degree of water recovery, frequency, and efficiency of backwash procedures and chemical cleaning were also studied. The results showed that MF seawater pretreatment is an effective alternative for NF desulfation.

2.
Article in English | IMSEAR | ID: sea-163280

ABSTRACT

Aim: To determine the biocidal efficacy of THPS based biocides currently used in oil fields to control souring and corrosion. Methodology: By direct monitoring of inhibition of cell growth and inhibition of microbial functional group activities such as the ability to reduce sulfate and generate sulfide by sulfate reducing bacteria (SRB), reduce nitrate to nitrite by heterotrophic nitrate reducing bacteria (hNRB) and oxidation of sulfide and reduction of nitrate by sulfide oxidizing, nitrate reducing bacteria( so-NRB) using CSB-K medium. Results: We observed that higher doses of THPS (>400 ppm) was required to considerably inhibit the ability of SRB to reduce sulfate and generate hydrogen sulfide. It was also observed that the activities of SRB were more affected by the THPS biocides than those of hNRB and so-NRB. Conclusion: We conclude that SRB may have developed low level microbial resistance to THPS based biocides as higher doses are required to inhibit their activities. It is therefore recommended that THPS should be used in combination with other biocides or metabolic inhibitors for it to be effective at lower concentrations.

3.
Article in English | IMSEAR | ID: sea-163248

ABSTRACT

Aim: To determine the level of inhibition of microbial functional group activities such as the ability to reduce sulfate to sulfide by sulfate reducing bacteria (SRB), reduce nitrate to nitrite by the heterotrophic nitrate reducing bacteria (hNRB), and oxidize sulfide and reduce nitrate by sulfide oxidizing, nitrate reducing bacteria (so-NRB) by some oxidizing biocides like chlorine, bromine and ozone. Methodology: Samples of the oxidizing biocides were obtained from Microcheck and the inhibition of some functional group activities in produced and injection water samples were determined using CSB-K medium. Results: Ozone was found to be more effective than chlorine and bromine in the inhibition of functional group activities at lower concentrations. Conclusion: More research effort is required to see if ozone can work in synergy with other biocides to improve on its efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL