Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Organ Transplantation ; (6): 352-2023.
Article in Chinese | WPRIM | ID: wpr-972924

ABSTRACT

As an effective procedure for type 1 diabetes mellitus and end-stage type 2 diabetes mellitus, islet transplantation could enable those patients to obtain proper control of blood glucose levels. Instant blood-mediated inflammatory reaction (IBMIR) is a nonspecific inflammation during early stage after islet transplantation. After IBMIR occurs, coagulation cascade, complement system activation and inflammatory cell aggregation may be immediately provoked, leading to loss of a large quantity of transplant islets, which severely affects clinical efficacy of islet transplantation. How to alleviate the islet damage caused by IBMIR is a hot topic in islet transplantation. Heparin and etanercept, an inhibitor of tumor necrosis factor-α, are recommended as drugs for treating IBMIR following islet transplantation. Recent studies have demonstrated that multiple approaches and drugs may be adopted to mitigate the damage caused by IBMIR to the islets. In this article, the findings in clinical and preclinical researches were reviewed, aiming to provide reference for the management of IBMIR after islet transplantation.

2.
Organ Transplantation ; (6): 207-2023.
Article in Chinese | WPRIM | ID: wpr-965043

ABSTRACT

Islet transplantation is a promising treatment of diabetes mellitus and its complications. Nevertheless, dysfunction post-transplantation, rejection and shortage of donors are the bottleneck issues in the field of islet transplantation. Optimizing the preservation method of pancreas plays a positive role in obtaining a sufficient quantity of effective islets and maintaining their functions. During the culture stage, anti-rejection and anti-apoptosis treatment of islets, including mesenchymal stem cell (MSC), MSC-derived exosomes, anti-apoptosis drugs and gene modification, may become major approaches for islet protection and functional maintenance in clinical islet transplantation. Use of anti-instant blood-mediated inflammatory reaction (IBMIR) drugs after islet transplantation also plays a critical role in protecting islet function. In this article, the whole process from islet preparation to islet transplantation was illustrated, and relevant strategies of islet protection and functional maintenance were reviewed, aiming to provide reference for improving the quality of donors to compensate for the shortage of absolute quantity of donors and elevating the efficiency of islet transplantation.

3.
Organ Transplantation ; (6): 475-2022.
Article in Chinese | WPRIM | ID: wpr-934768

ABSTRACT

Objective To validate whether the expression of human cluster of differentiation 55 (hCD55) protein in porcine islet cells could inhibit the activation of complement components in human serum. Methods Four adult pigs with WT (wild type), GTKO [α-1, 3-galactosyltransferase (GGTA1) knockout], GTKO/hCD55 and hCD55 genotypes were selected. Islet cells were isolated from WT, GTKO and GTKO/hCD55 pigs, and the purity and insulin secretion function were detected. The expression of hCD55 at the DNA, RNA and protein levels was analyzed by agarose gel electrophoresis, reverse transcription polymerase chain reaction (RT-PCR) and flow cytometry, respectively. Complement-dependent cytotoxicity assay and complement deposition assay were performed under the incubation conditions with fresh human serum. Results The purity of isolated porcine islet cells from three genotype pigs was > 75%, and the glycemic index was > 1. The expression of hCD55 messenger RNA(mRNA) and protein in GTKO/hCD55 porcine islet cells decreased the deposition of human complement component C3c and membrane-attacking complex C5b-9, and reduced the cytotoxicity. Conclusions The expression of hCD55 protein in porcine islet cells could inhibit the activation of human complement and reduce complement-mediated killing effect, indicating that hCD55 protein could exert complement protection effect on porcine islet cells. These findings provide theoretical basis for the application of hCD55 in islet xenotransplantation.

4.
The Journal of the Korean Society for Transplantation ; : 214-226, 2009.
Article in Korean | WPRIM | ID: wpr-155422

ABSTRACT

Diabetes mellitus is increasing all over the world and is a serious health problem. Pancreatic islet transplantation is promising treatment for diabetes mellitus, but an imbalance between deceased pancreas donors and recipients limited the widespread clinical application. Therefore, pig islets could be used as an alternative islet source in transplantation. However, a big hurdle to clinical application of islet xenotransplantation is the instant blood mediated inflammatory reaction (IBMIR), which is characterized by activation of the coagulation cascade, platelets and complement systems. Innate immune cells infiltrate the islets in the process of IBMIR and thereby accelerate the early graft loss. Characteristics of IBMIR in islet xenotransplantion are very different from the rejection in solid organ xenotransplantation. Therefore, we focus on the molecules for surmounting IBMIR in order to accomplish successful islet xenotransplantation. To prevent the IBMIR in islet xenotransplantation, development of genetic modified pigs containing anti-coagulant, anti-thrombosis and complement regulatory genes, or capsulation of islet with biomaterials for blocking immune response around islet surface can be tried. Galpha-Gal knockout pigs and the diverse transgenic pigs for complement regulatory protein or anti-coagulant genes have been developed for xenotransplantation. This review summarized on characteristics of rejection in islet xenotransplantation and discusses the strategies for overcoming the rejection.


Subject(s)
Humans , Biocompatible Materials , Blood Platelets , Complement System Proteins , Diabetes Mellitus , Genes, Regulator , Islets of Langerhans , Pancreas , Rejection, Psychology , Swine , Tissue Donors , Transplantation, Heterologous , Transplants
SELECTION OF CITATIONS
SEARCH DETAIL