Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add filters








Year range
1.
Annals of Dentistry ; : 23-31, 2021.
Article in English | WPRIM | ID: wpr-877165

ABSTRACT

@#This study aimed to evaluate and compare the internal adaptation of bulk-fill resin-based composite restorative materials with flowable composites as lining materials using self-etch adhesive system. Class I cavities (2mmx4mm) were prepared on flattened occlusal surfaces of fifty extracted human premolars and randomly assigned into five groups (n=10) according to the materials used: Beautifil Bulk-fill Restorative (BR); Beautifil Bulk-fill Flowable (BF); Beautifil Flow Flowable F10 (BF10); and Self-etch adhesive (SEA). Group A: SEA+BR; Group B: SEA+BF10+BR; Group C: SEA+BF+BR; Group D: SEA+BF10+SEA+BR and Group E: SEA+BF+SEA+BR. The samples were thermocycled for 500 cycles, then sectioned mesiodistally, polished and pre-treated prior to scanning electron microscopy (SEM) evaluation. From SEM images, measurement of adhesive and cohesive adaptation failures was recorded at multiple sites of the pulpal floor and in between materials. Data were analysed using one-way ANOVA and post-hoc Tukey tests (p<0.05). Cohesive failure in SEA was observed at the pulpal floor with the lowest percentage in Group A (5.14%), and highest in Group C and E (>16%). However, there were no significant difference among all groups. Adhesive failure was seen at the pulpal floor between SEA+BF/BF10/BR and between SEA+dentine with the highest percentage of gaps formed in Group A between SEA+dentine (6.62%) and SEA+BR (5.30%). Nonetheless, no significant differences were observed among all groups with p=0.89 and p=0.70, respectively. With the use of BF/BF10 at the pulpal floor, adhesive failure was reduced but resulted in increased of cohesive failure. However, both adaptation failures were absent between materials (BF/BF10 and BR) regardless with or without application of SEA.

2.
J. oral res. (Impresa) ; 9(5): 414-422, oct. 31, 2020. ilus, tab
Article in English | LILACS | ID: biblio-1179033

ABSTRACT

Purpose: Two important factors in dental prosthesis are making an accurate impression and producing a suitable cast which represents the exact relationship between prepared tooth and oral structures. This study, aimed to investigate the effects of different combinations of impression and pouring materials on marginal and internal adaptation of premolar zirconia crowns. Material and Methods: Forty maxillary premolars were prepared considering round shoulder finish line. The impressions were made either by additional (Panasil) or condensation (Speedex) silicon, and poured by two different types of gypsum materials (Siladent or GC gypsum) (N=10). Zirconia crowns were fabricated using a CAD-CAM system. The crowns were cemented, and the samples were cut in bucco-lingual direction. Marginal and internal gaps were measured by stereomicroscope (×25). Results: The mean marginal gaps for Pansil-Siladent, Panasil-GC, Speedex-Siladent, and Speedex-GC were 141 µm, 143 µm, 131 µm, and 137 µm respectively. The internal gaps were 334 µm, 292 µm, 278 µm, and 257 µm respectively. The independent T-Student test showed no significant differences in average marginal or internal gap among various impression and gypsum materials or their interactions (p>0.05). Two-way ANOVA test showed no significant differences in maximum marginal or internal gap among various impression and gypsum materials and their interactions (p>0.05). Conclusion: The present study revealed no statistically significant difference in marginal/internal gap among crowns prepared using different combinations of impression-pouring materials evaluated.


Introducción: Dos factores importantes en la prótesis dental son hacer una impresión precisa y la producción de un modelo adecuado que represente la relación exacta entre el diente preparado y las estructuras orales. Este estudio, tuvo como objetivo investigar los efectos de diferentes combinaciones de materiales de impresión y vertido sobre la adaptación marginal e interna de coronas de zirconio premolar. Material y Métodos: Se prepararon cuarenta premolares maxilares considerando la línea de meta del hombro redondo. Las impresiones se realizaron con silicio adicional (Panasil) o de condensación (Speedex) y se vertieron con dos tipos diferentes de materiales de yeso (yeso Siladent o GC) (N = 10). Las coronas de zirconio se fabricaron utilizando el sistema CAD-CAM. Las coronas se cementaron y las muestras se cortaron en dirección buco-lingual. La brecha marginal e interna se midió con estereomicroscopio (×25). Resultados: Las brechas marginales medias para Pansil-Siladent, Panasil-GC, Speedex-Siladent y Speedex-GC fueron de 141µm, 143µm, 131µm y 137µm, respectivamente. Las brechas internas fueron 334µm, 292µm, 278µm y 257µm, respectivamente. La prueba de T-Student independiente no mostró diferencias significativas en la brecha marginal o interna promedio entre varios materiales de impresión y yeso o sus interacciones (p>0.05). La prueba ANOVA bidireccional no mostró diferencias significativas en el espacio marginal o interno máximo entre varios materiales de yeso y de impresión y sus interacciones (p>0.05). Conclusión: El presente estudio no reveló diferencias estadísticamente significativas en la brecha marginal/interna entre las coronas preparadas con diferentes combinaciones de materiales de impresión y vertido evaluados.


Subject(s)
Humans , Dental Prosthesis/methods , Crowns , Dental Impression Materials , Zirconium/chemistry , Bicuspid , Calcium Sulfate , Computer-Aided Design , Dental Cements , Dental Restoration, Permanent
3.
The Journal of Advanced Prosthodontics ; : 463-469, 2017.
Article in English | WPRIM | ID: wpr-159613

ABSTRACT

PURPOSE: To evaluate the fit of a three-unit metal framework of fixed dental prostheses made by subtractive and additive manufacturing. MATERIALS AND METHODS: One master model of metal was fabricated. Twenty silicone impressions were made on the master die, working die of 10 poured with Type 4 stone, and working die of 10 made of scannable stone. Ten three-unit wax frameworks were fabricated by wax-up from Type IV working die. Stereolithography files of 10 three-unit frameworks were obtained using a model scanner and three-dimensional design software on a scannable working die. The three-unit wax framework was fabricated using subtractive manufacturing (SM) by applying the prepared stereolithography file, and the resin framework was fabricated by additive manufacturing (AM); both used metal alloy castings for metal frameworks. Marginal and internal gap were measured using silicone replica technique and digital microscope. Measurement data were analyzed by Kruskal-Wallis H test and Mann-Whitney U-test (α=.05). RESULTS: The lowest and highest gaps between premolar and molar margins were in the SM group and the AM group, respectively. There was a statistically significant difference in the marginal gap among the 3 groups (P < .001). In the marginal area where pontic was present, the largest gap was 149.39 ± 42.30 µm in the AM group, and the lowest gap was 24.40 ± 11.92 µm in the SM group. CONCLUSION: Three-unit metal frameworks made by subtractive manufacturing are clinically applicable. However, additive manufacturing requires more research to be applied clinically.


Subject(s)
Alloys , Bicuspid , Dental Prosthesis , Denture, Partial, Fixed , Molar , Replica Techniques , Silicon , Silicones
4.
The Journal of Advanced Prosthodontics ; : 239-243, 2017.
Article in English | WPRIM | ID: wpr-114933

ABSTRACT

PURPOSE: The purpose of this study is to compare single and three-unit metal frameworks that are produced by micro-stereolithography. MATERIALS AND METHODS: Silicone impressions of a selected molar and a premolar were used to make master abutments that were scanned into a stereolithography file. The file was processed with computer aided design software to create single and three-unit designs from which resin frameworks were created using micro-stereolithography. These resin frameworks were subjected to investment, burnout, and casting to fabricate single and three-unit metal ones that were measured under a digital microscope by using the silicone replica technique. The measurements were verified by means of the Mann-Whitney U test (α=.05). RESULTS: The marginal gap was 101.9 ± 53.4 µm for SM group and 104.3 ± 62.9 µm for TUM group. The measurement of non-pontics in a single metal framework was 93.6 ± 43.9 µm, and that of non-pontics in a three-unit metal framework was 64.9 ± 46.5 µm. The dimension of pontics in a single metal framework was 110.2 ± 61.4 µm, and that of pontics in a three-unit metal framework was 143.7 ± 51.8 µm. CONCLUSION: The marginal gap was smaller for the single metal framework than for the three-unit one, which requires further improvement before it can be used for clinical purposes.


Subject(s)
Bicuspid , Computer-Aided Design , Denture, Partial, Fixed , Investments , Molar , Replica Techniques , Silicon , Silicones
5.
The Journal of Advanced Prosthodontics ; : 159-169, 2017.
Article in English | WPRIM | ID: wpr-71187

ABSTRACT

PURPOSE: The purposes of this study were to evaluate the marginal and internal gaps, and the potential clinical applications of three different methods of dental prostheses fabrication, and to compare the prostheses prepared using the silicone replica technique (SRT) and those prepared using the three-dimensional superimposition analysis (3DSA). MATERIALS AND METHODS: Five Pekkton, lithium disilicate, and zirconia crowns were each manufactured and tested using both the SRT and the two-dimensional section of the 3DSA. The data were analyzed with the nonparametric version of a two-way analysis of variance using rank-transformed values and the Tukey's post-hoc test (α = .05). RESULTS: Significant differences were observed between the fabrication methods in the marginal gap (P .350), deep chamfer (P > .719), and axial wall (P > .150). As the 3DSA method is three-dimensional, it allows for the measurement of arbitrary points. CONCLUSION: All of the three fabrication methods are valid for measuring clinical objectives because they produced prostheses within the clinically acceptable range. Furthermore, a three-dimensional superimposition analysis verification method such as the silicone replica technique is also applicable in clinical settings.


Subject(s)
Crowns , Dental Prosthesis , Lithium , Methods , Prostheses and Implants , Replica Techniques , Silicon , Silicones
6.
The Journal of Advanced Prosthodontics ; : 176-181, 2017.
Article in English | WPRIM | ID: wpr-71185

ABSTRACT

PURPOSE: The purpose of this study was to evaluate the marginal and internal gaps of Ni-Cr and Co-Cr copings, fabricated using the dental µ-SLA system. MATERIALS AND METHODS: Ten study dies were made using a two-step silicone impression with a dental stone (type IV) from the master die of a tooth. Ni-Cr (NC group) and Co-Cr (CC group) alloy copings were designed using a dental scanner, CAD software, resin coping, and casting process. In addition, 10 Ni-Cr alloy copings were manufactured using the lost-wax technique (LW group). The marginal and internal gaps in the 3 groups were measured using a digital microscope (160 ×) with the silicone replica technique, and the obtained data were analyzed using the non-parametric Kruskal-Wallis H test. Post-hoc comparisons were performed using Bonferroni-corrected Mann-Whitney U tests (α=.05). RESULTS: The mean (±standard deviation) values of the marginal, chamfer, axial wall, and occlusal gaps in the 3 groups were as follows: 81.5±73.8, 98.1±76.1, 87.1±44.8, and 146.8±78.7 µm in the LW group; 76.8±48.0, 141.7±57.1, 80.7±47.5, and 194.69±63.8 µm in the NC group; and 124.2±52.0, 199.5±71.0, 67.1±37.6, and 244.5±58.9 µm in the CC group. CONCLUSION: The marginal gap in the LW and NC groups were clinically acceptable. Further improvement is needed for CC group to be used clinical practice.


Subject(s)
Alloys , Replica Techniques , Silicon , Silicones , Tooth
7.
Restorative Dentistry & Endodontics ; : 37-43, 2016.
Article in English | WPRIM | ID: wpr-130026

ABSTRACT

OBJECTIVES: The purpose of this study was to compare the marginal and internal fit of nano-composite CAD-CAM restorations. MATERIALS AND METHODS: A full veneer crown and an mesio-occluso-distal (MOD) inlay cavity, which were prepared on extracted human molars, were used as templates of epoxy resin replicas. The prepared teeth were scanned and CAD-CAM restorations were milled using Lava Ultimate (LU) and experimental nano-composite CAD/CAM blocks (EB) under the same milling parameters. To assess the marginal and internal fit, the restorations were cemented to replicas and were embedded in an acrylic mold for sectioning at 0.5 mm intervals. The measured gap data were pooled according to the block types and measuring points for statistical analysis. RESULTS: Both the block type and measuring point significantly affected gap values, and their interaction was significant (p = 0.000). In crowns and inlays made from the two blocks, gap values were significantly larger in the occlusal area than in the axial area, while gap values in the marginal area were smallest (p < 0.001). Among the blocks, the restorations milled from EB had a significantly larger gap at all measuring points than those milled from LU (p = 0.000). CONCLUSIONS: The marginal and internal gaps of the two nano-composite CAD/CAM blocks differed according to the measuring points. Among the internal area of the two nano-composite CAD/CAM restorations, occlusal gap data were significantly larger than axial gap data. The EB crowns and inlays had significantly larger gaps than LU restorations.


Subject(s)
Humans , Computer-Aided Design , Crowns , Fungi , Inlays , Molar , Tooth
8.
Restorative Dentistry & Endodontics ; : 37-43, 2016.
Article in English | WPRIM | ID: wpr-130011

ABSTRACT

OBJECTIVES: The purpose of this study was to compare the marginal and internal fit of nano-composite CAD-CAM restorations. MATERIALS AND METHODS: A full veneer crown and an mesio-occluso-distal (MOD) inlay cavity, which were prepared on extracted human molars, were used as templates of epoxy resin replicas. The prepared teeth were scanned and CAD-CAM restorations were milled using Lava Ultimate (LU) and experimental nano-composite CAD/CAM blocks (EB) under the same milling parameters. To assess the marginal and internal fit, the restorations were cemented to replicas and were embedded in an acrylic mold for sectioning at 0.5 mm intervals. The measured gap data were pooled according to the block types and measuring points for statistical analysis. RESULTS: Both the block type and measuring point significantly affected gap values, and their interaction was significant (p = 0.000). In crowns and inlays made from the two blocks, gap values were significantly larger in the occlusal area than in the axial area, while gap values in the marginal area were smallest (p < 0.001). Among the blocks, the restorations milled from EB had a significantly larger gap at all measuring points than those milled from LU (p = 0.000). CONCLUSIONS: The marginal and internal gaps of the two nano-composite CAD/CAM blocks differed according to the measuring points. Among the internal area of the two nano-composite CAD/CAM restorations, occlusal gap data were significantly larger than axial gap data. The EB crowns and inlays had significantly larger gaps than LU restorations.


Subject(s)
Humans , Computer-Aided Design , Crowns , Fungi , Inlays , Molar , Tooth
9.
The Journal of Advanced Prosthodontics ; : 294-302, 2015.
Article in English | WPRIM | ID: wpr-44185

ABSTRACT

PURPOSE: The purpose of this study was to verify the clinical-feasibility of additive manufacturing by comparing the accuracy of four different manufacturing methods for metal coping: the conventional lost wax technique (CLWT); subtractive methods with wax blank milling (WBM); and two additive methods, multi jet modeling (MJM), and micro-stereolithography (Micro-SLA). MATERIALS AND METHODS: Thirty study models were created using an acrylic model with the maxillary upper right canine, first premolar, and first molar teeth. Based on the scan files from a non-contact blue light scanner (Identica; Medit Co. Ltd., Seoul, Korea), thirty cores were produced using the WBM, MJM, and Micro-SLA methods, respectively, and another thirty frameworks were produced using the CLWT method. To measure the marginal and internal gap, the silicone replica method was adopted, and the silicone images obtained were evaluated using a digital microscope (KH-7700; Hirox, Tokyo, Japan) at 140X magnification. Analyses were performed using two-way analysis of variance (ANOVA) and Tukey post hoc test (alpha=.05). RESULTS: The mean marginal gaps and internal gaps showed significant differences according to tooth type (P<.001 and P<.001, respectively) and manufacturing method (P<.037 and P<.001, respectively). Micro-SLA did not show any significant difference from CLWT regarding mean marginal gap compared to the WBM and MJM methods. CONCLUSION: The mean values of gaps resulting from the four different manufacturing methods were within a clinically allowable range, and, thus, the clinical use of additive manufacturing methods is acceptable as an alternative to the traditional lost wax-technique and subtractive manufacturing.


Subject(s)
Bicuspid , Methods , Molar , Seoul , Silicones , Tooth
10.
The Journal of Advanced Prosthodontics ; : 177-184, 2014.
Article in English | WPRIM | ID: wpr-53946

ABSTRACT

PURPOSE: The aim of this study was to measure the changes on the marginal and internal adaptation of zirconia based anterior fixed partial dentures after the porcelain firing process. MATERIALS AND METHODS: A total of 34 anterior fixed partial dentures using LAVA CAD/CAM system (3M ESPE, Germany) were applied. Two silicone replicas were obtained: one is obtained before porcelain firing process (initial) and the other is obtained after porcelain firing process (final), followed by the examination under a binocular stereomicroscope. Kruskal Wallis and Wilcoxon Signed Ranks tests were used for the statistical analysis (P.05). At the internal gap measurements, final marginal area values (59.54 microm) were significantly lower than the initial marginal area values (68.68 microm)(P<.05). The highest and the lowest internal gap values were observed at the incisal/occlusal area and at the marginal area, respectively. In addition, lower internal gap values were obtained for canines than for central incisors, lateral incisors and premolars at the incisal area (P<.05). CONCLUSION: The firing cycles did not affect the marginal gap of Lava CAD/CAM system, but it is controversial for the internal gap.


Subject(s)
Bicuspid , Dental Porcelain , Denture, Partial, Fixed , Dentures , Fires , Incisor , Resin Cements , Silicones , Telescopes
11.
The Journal of Advanced Prosthodontics ; : 22-29, 2014.
Article in English | WPRIM | ID: wpr-192399

ABSTRACT

PURPOSE: This study aimed to investigate the potential clinical application of digitized silicone rubber impressions by comparing the accuracy of zirconia 3-unit fixed partial dentures (FPDs) fabricated from 2 types of data (working model and impression) obtained from a laser scanner. MATERIALS AND METHODS: Ten working models and impressions were prepared with epoxy resin and vinyl polysiloxane, respectively. Based on the data obtained from the laser scanner (D-700; 3Shape A/S, Copenhagen, Denmark), a total of 20 zirconia frameworks were prepared using a dental CAD/CAM system (DentalDesigner; 3shape A/S, Copenhagen, Denmark / Ener-mill, Dentaim, Seoul, Korea). The silicone replicas were sectioned into four pieces to evaluate the framework fit. The replicas were imaged using a digital microscope, and the fit of the reference points (P1, P2, P3, P4, P5, P6, and P7) were measured using the program in the device. Measured discrepancies were divided into 5 categories of gaps (MG, CG, AWG, AOTG, OG). Data were analyzed with Student's t-test (alpha=0.05), repeated measures ANOVA and two-way ANOVA (alpha=0.05). RESULTS: The mean gap of the zirconia framework prepared from the working models presented a narrower discrepancy than the frameworks fabricated from the impression bodies. The mean of the total gap in premolars (P=.003) and molars (P=.002) exhibited a statistical difference between two groups. CONCLUSION: The mean gap dimensions of each category showed statistically significant difference. Nonetheless, the digitized impression bodies obtained with a laser scanner were applicable to clinical settings, considering the clinically acceptable marginal fit (120 microm).


Subject(s)
Bicuspid , Denmark , Denture, Partial, Fixed , Molar , Seoul , Silicone Elastomers , Siloxanes
12.
The Journal of Korean Academy of Prosthodontics ; : 148-155, 2009.
Article in Korean | WPRIM | ID: wpr-89059

ABSTRACT

STATEMENT OF PROBLEM: The interest in all-ceramic restorations has increased as more techniques have become available. With the introduction of machinable dental ceramics and CAD/CAM systems there is a need to evaluate the quality levels of these new fabrication techniques. PURPOSE: This study is to evaluate the crown fidelity (absolute marginal discrepancy and internal gap) of various zirconia-based all-ceramic crowns fabricated with different CAD/CAM (computer-assisted design/computer-assisted manufacturing) systems and conventional cast metal-ceramic crowns. MATERIAL AND METHODS: A resin tooth of lower right second premolar was prepared. After an impression was taken, one metal master die was made. Then 40 impressions of metal master dies were taken for working dies. 10 crowns per each system were fabricated using 40 working dies. Metal-ceramic crowns were cast by using the conventional method, and Procera, Lava, and Cerec inLab crowns were fabricated with their own CAD/CAM manufactruing procedures. The vertical marginal discrepancies and internal gaps of each crown groups were measured on a metal master die without a luting agent. The results were statistically analyzed using the one-way ANOVA and Tukey's HSD test. RESULTS: 1. Vertical marginal discrepancies were 50.6 +/- 13.9 micrometer for metal-ceramic crowns, 62.3 +/- 15.7 micrometer for Procera crowns, 45.3 +/- 7.9 micrometer for Lava crowns, and 71.2 +/- 2.0 micrometer for Cerec inLab crowns. 2. The Internal gaps were 52.6 +/- 10.1 micrometer for metal-ceramic crowns, 161.7 +/- 18.5 micrometer for Procera crowns, 63.0 +/- 10.2 micrometer for Lava crowns, and 73.7 +/- 10.7 micrometer for Cerec inLab crowns. CONCLUSION: 1. The vertical marginal discrepancies of, 4 crown groups were all within the clinically acceptable range (120 micrometer). 2. The internal gaps of LAVA, Cerec inlab, and metal-ceramic crowns were within clinically acceptable range except Procera crown (140 micrometer).


Subject(s)
Bicuspid , Ceramics , Crowns , Dental Cements , Dental Porcelain , Metal Ceramic Alloys , Titanium , Tooth , Zirconium
13.
Journal of Korean Academy of Conservative Dentistry ; : 177-183, 2009.
Article in Korean | WPRIM | ID: wpr-21554

ABSTRACT

The aim of this study was to evaluate the marginal and internal gaps in CEREC3 CAD/CAM inlays of three different preparation designs. CEREC3 Inlays of three different preparation designs (n = 10) were fabricated according to Group I-conventional functional cusp capping/shoulder preparation, Group II-horizontal reduction of cusps and Group III-complete reduction of cusps/shoulder preparation. After cementation of inlays, the bucco-lingual cross section was performed through the center of tooth. Cross section images of 20 magnifications were obtained through the stereomicroscope. The gaps were measured using the Leica application suite software at each reference point. Statistical analysis was performed using one-way ANOVA and Tukey's test (alpha<0.05). The marginal gaps ranged from 80.0 to 97.8 microm for Group I, 42.0 to 194.8 microm for Group II, 51.0 to 80.2 microm for Group III. The internal gaps ranged from 90.5 to 304.1 microm for Group I, 80.0 to 274.8 microm for Group II, 79.7 to 296.7 microm for Group III. The gaps of each group were the smallest on the margin and the largest on the horizontal wall. For the CEREC3 CAD/CAM inlays, the simplified designs (groups II and III) did not demonstrate superior results compared to the traditional cusp capping design (group I).


Subject(s)
Cementation , Inlays , Tooth
14.
The Journal of Korean Academy of Prosthodontics ; : 269-279, 2008.
Article in English | WPRIM | ID: wpr-209393

ABSTRACT

STATEMENT OF PROBLEM: Recently, various all-ceramic crowns fabricated with CAD/CAM systems have come into wide use in dental clinic. However, there are only few domestic studies on CAD/CAM restorations. PURPOSE: Purpose of this study was to compare the fidelity (absolute marginal discrepancy and internal gap) between various cores fabricated with different CAD/CAM systems (Procera system, Lava system, Cerec inLab system) and conventional metal cast core. MATERIALS AND METHODS: 10 cores per each system were fabricated. The absolute marginal discrepancies were measured using measuring microscope and digital counter. The internal gaps were calculated using a silicone paste. The results were statistically analyzed using the one-way ANOVA test and Tukey's HSD test. RESULTS: Within the limits of this study the results were as follows. 1. The absolute marginal discrepancies were 32.5+/-3.7 micrometer for metal cast core, 72.2+/-7.0 micrometer for Procera core, 40.8+/-5.4 micrometer for Lava core, and 55.3+/-8.7 micrometer for Cerec inLab core. The internal gaps were 38.4+/-5.7 micrometer for metal cast core, 71.4+/-5.3 micrometer for Procera core, 45.9+/-7.3 micrometer for Lava core, and 51.8+/-6.2 micrometer for Cerec inLab core. 2. The fidelity of metal cast core showed the smallest gaps, followed by Lava core, Cerec inLab core, and Procera core. CONCLUSION: The fidelities of 4 core groups were all within the clinically acceptable range (120 micrometer).


Subject(s)
Ceramics , Crowns , Dental Clinics , Dental Porcelain , Metal Ceramic Alloys , Organothiophosphorus Compounds , Silicones , Titanium
15.
The Journal of Korean Academy of Prosthodontics ; : 489-500, 2004.
Article in Korean | WPRIM | ID: wpr-29043

ABSTRACT

STATEMENT OF PROBLEM: The use of zirconia prostheses fabricated with CAD/CAM system is on an increasing trend in dentistry. However, evaluation of the fit related to internal relief and marginal reproducibility of zirconia has not been reported. PURPOSE: This study was to evaluate the fit related to internal relief and marginal reproducibility of zirconia core fabricated with CAD/CAM system. Materials and methods: The evaluation was based on 30 zirconia cores and 5 IPS-Empress2 cores. Zirconia cores were fabricated in different conditions of internal relief(0, 10, 20, 30, 40 and 50 micrometer), and IPS-Empress2 cores were fabricated in accordance with the manufacturer's instructions. Before cementation, the marginal discrepancies of cores were measured on metal die. And then, each core was cemented to stone die, embedded in an acrylic resin and sectioned in two planes(mesiodistally and labiopalatally). The internal gaps were measured at the margin and axial surface. Measurements for the marginal discrepancies, the internal marginal gaps and the internal axial gaps were performed under a measuring microscope(Compact measuring microscope STM5; Olympus, Japan) at a magnification of *100. In addition, the marginal configurations of metal die, zirconia core and IPS-Empress2 core were examined with SEM(S-2700, Hitachi, Japan). RESULTS: Within the limits of this study the results were as follows. 1. Compared with IPS-Empress2 cores, the marginal discrepancies of zirconia cores had no significant differences, the internal marginal gaps were statistically smaller and the internal axial gaps were statistically larger in each condition of internal relief. 2. The marginal discrepancies and the internal marginal gaps of zirconia cores had no significant differences related to the conditions of internal relief(P>0.05). 3. The internal axial gaps of zirconia cores with 0.20micrometer for internal relief were significantly larger than that with 50micrometer(P<0.0001). 4. SEM micrographs showed favorable marginal reproducibility of zirconia core and smooth texture on the milling surface. CONCLUSION: The marginal discrepancy and the internal gaps of zirconia core were clinically acceptable and the milling surface was showed smooth texture. For fabrication of the durable esthetic restoration, further investigations on complex design of core, milling accuracy, compatability of enamel porcelain and porcelain firing seems to be needed.


Subject(s)
Cementation , Dental Enamel , Dental Porcelain , Dentistry , Fires , Prostheses and Implants
SELECTION OF CITATIONS
SEARCH DETAIL