Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Type of study
Language
Year range
1.
J Vector Borne Dis ; 2009 Dec; 46(4): 288-294
Article in English | IMSEAR | ID: sea-142700

ABSTRACT

Background & objectives: Plasmodium falciparum is the leading cause of mortality and causes cerebral malaria associated with sequestration caused by cytoadherence of the trophozoite and schizont-infected erythrocytes to the endothelial cells of the deep vascular beds in the brain. Pathophysiology of malaria is complicated by rosetting. Rosetting is a process of binding of uninfected erythrocytes to the erythrocytes infected with mature asexual parasites and is controlled by expression of complement receptor 1 (CR1) on RBC surface. Various polymorphic forms of CR1 are known including molecular weight polymorphism, red blood cell expression levels/density polymorphism and Knops (KN) polymorphism. The Knops blood group includes several allelic pairs; Knops a and b (Kna and Knb), McCoy a and b (McCa, McCb), Swain-Langley (Sla), and Villien (Vil). Knops phenotype Sl (a–) has been found to rosette less effectively than Sl (a+) and hence suggested to be more protective. P. falciparum cases have not reduced much as compared to the reduction in the total number of malaria cases in the past few years. In addition, P. falciparum is the leading cause for all mortality and most of the morbidity in India. We, therefore, investigated the role of CR1 Knops polymorphism in the pathophysiology of malaria in Indian population. Methods: A case control approach was used for this study. CAPS (Cleaved amplified polymorphic sequence) methodology was adopted. A total of 100 normal individuals (free from any ailment) and 100 individuals suffering from P. falciparum infection (uncomplicated malaria) were recruited for this study. Results: We found that in Indian population (normal individuals and P. falciparum-infected individuals), only the wild type allele is present. Interpretation & conclusion: We concluded that the process of rosetting in the Indian context could be occurring independently of the effect of Knops polymorphism and in part could be controlled by other polymorphisms of the CR1 gene (density and structural polymorphism).

2.
Indian J Hum Genet ; 2007 May; 13(2): 39-47
Article in English | IMSEAR | ID: sea-138823

ABSTRACT

Malaria is a pathogenic infection caused by protozoa of the genus plasmodium. It is mainly confined to sub-Saharan Africa, Asia and South America. This disease claims the life of over 1.5 to 2.7 million people per year. Owing to such a high incidence of malarial infections, there is an urgent need for the development of suitable vaccines. For the development of ideal vaccines, it is essential to understand the molecular mechanisms of malarial pathogenesis and the factors that lead to malaria infection. Genetic factors have been proposed to play an important role in malarial pathogenesis. Complement receptor 1 (CR1) is an important host red blood cell protein involved in interaction with malarial parasite. Various polymorphic forms of CR1 have been found to be involved in conferring protection or increasing susceptibility to malaria infections. Low-density allele (L) of CR1 gave contradictory results in different set of studies. In addition, Knops polymorphic forms Sl (a+) and McC (a) have been found to contribute more towards the occurrence of cerebral malaria in malaria endemic regions compared to individuals with Sl (a-) / McC (a/b) genotype. This article reviews the research currently going on in this area and throws light on as yet unresolved mysteries of the role of CR1 in malarial pathogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL