Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Acta Pharmaceutica Sinica ; (12): 1677-1684, 2023.
Article in Chinese | WPRIM | ID: wpr-978725

ABSTRACT

We constructed and optimized the plasmid DNA (pDNA) Opt-S encoding the gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein, using poly (lactic-co-glycolic acid) copolymer (PLGA) as a delivery carrier for pDNA. PLGA-pDNA NPs were loaded by nanoprecipitation and its properties in vitro were preliminary evaluated. The results showed that the prepared PLGA-pDNA NPs were regular morphology, clear edges, with an average particle size of (184.2 ± 2.4) nm, polydisperse index (PDI) of 0.093 ± 0.013, zeta potential of (-68.10 ± 0.36) mV, and encapsulation rate of (98.92 ± 0.22)%. The PLGA-pDNA NPs were stable at -20 ℃ for 7 months and could protect pDNA against nuclease degradation. And they also exhibited sustained release of pDNA in vitro. The PLGA-pDNA NPs have low cytotoxicity and high safety. In addition, in vitro transfection experiments showed that the SARS-CoV-2 S gene could enter cells and be expressed. These results indicate that PLGA-pDNA NPs non-viral gene vector have simple preparation process and good performance, which are expected to provide a new idea for the research and development of SARS-CoV-2 vaccine.

2.
Natal; s.n; 03 nov. 2022. 116 p. ilus, graf, tab.
Thesis in Portuguese | LILACS, BBO | ID: biblio-1532379

ABSTRACT

Existe uma associação entre diabetes e a periodontite, e a Metformina (MET) além de controlar os níveis glicêmicos, tem apresentado efeitos antiinflamatórios e na diminuição da perda óssea periodontal. Ao se veicular a MET a um sistema de nanopartículas pode-se apresentar a vantagem de aumento da eficácia terapêutica. Objetivos: esse estudo consistiu na avaliação dos efeitos antiinflamatórios, perda óssea e disponibilidade in vitro/in vivo de uma nanopartícula de ácido poli lático-co-glicólico (PLGA) associada à MET em um modelo de periodontite induzida por ligadura. Materiais e métodos: o PLGA carreado com diferentes doses da MET foi caracterizado pelo seu diâmetro médio, tamanho da partícula, índice de polidispensão e eficiência de aprisionamento. Foram utilizados ratos machos da linhagem Wistar, divididos aleatoriamente, em grupos controles e experimentais com diferentes doses de MET associadas ou não ao PLGA, os quais receberam diferentes tratamentos. Amostras de maxilas e tecidos gengivais foram utilizadas para avaliação de perda óssea e inflamação, por meio da microtomografia computadorizada, histopatológico, imunohistoquímica, análise de citocinas inflamatórias e expressão gênica de proteínas por RT-PCR quantitativo. Para o ensaio de liberação in vitro, utilizou-se o dispositivo de células de difusão vertical de Franz estáticas. Para a disponibilidade in vivo, as amostras de sangue foram coletadas em diferentes intervalos de tempo e analisadas por cromatografia líquida de alta eficiência acoplado a espectrometria de massas (HPLC-MS/MS). Resultados: o diâmetro médio das nanopartículas de PLGA carreadas com MET estava em um intervalo de 457,1 ± 48,9 nm (p <0,05) com um índice de polidispersidade de 0,285 (p <0,05), potencial Z de 8,16 ± 1,1 mV (p <0,01) e eficiência de aprisionamento (EE) de 66,7 ± 3,73. O tratamento com a MET 10 mg / kg + PLGA mostrou uma baixa concentração de células inflamatórias, fraca imunomarcação para RANKL, Catepsina K, OPG e osteocalcina. Diminuição dos níveis de IL-1ß e TNF-α (p <0,05), aumento da expressão gênica do AMPK (p <0,05) e diminuição do NF-κB p65, HMGB1 e TAK-1 (p <0,05). O 10 mg/kg MET + PLGA foi liberado no ensaio in vitro sugerindo um modelo cinético de difusão parabólica com um perfil de liberação que atinge 50% de seu conteúdo em 2h e permanece em liberação constante em torno de 60% até o final de 6h. O ensaio in vivo mostrou o volume aparente de distribuição Vz/F (10 mg/kg MET + PLGA, 46,31 mL/kg vs. 100 mg/kg MET + PLGA, 28,8 mL/kg) e o tempo médio de residência MRTinf (PLGA + MET 10 mg /kg, 37,66h vs. MET 100 mg/kg, 3,34h). Conclusão: o PLGA carreado com MET diminuiu a inflamação e a perda óssea na periodontite em ratos diabéticos. O 10 mg/kg MET + PLGA teve uma taxa de eliminação mais lenta em comparação com o MET 100 mg/kg. A formulação modifica os parâmetros farmacocinéticos, como volume de distribuição aparente e tempo médio de residência (AU).


There is an association between diabetes and periodontitis, and Metformin (MET) in addition to controlling glycemic levels, has shown anti-inflammatory effects and decreased periodontal bone loss. By transferring MET to a nanoparticle system, the advantage of increasing therapeutic efficacy can be presented. Objectives: this study consisted of evaluating the antiinflammatory effects, bone loss and in vitro/in vivo availability of a polylactic-co-glycolic acid (PLGA) nanoparticle associated with MET in a ligature-induced periodontitis model. Materials and methods: PLGA loaded with different doses of MET was characterized by its mean diameter, particle size, polydispension index and entrapment efficiency. Male Wistar rats were used, randomly divided into control and experimental groups with different doses of MET associated or not with PLGA, which received different treatments. Samples of jaws and gingival tissues were used to assess bone loss and inflammation, using computed microtomography, histopathology, immunohistochemistry, analysis of inflammatory cytokines and gene expression of proteins by quantitative RT-PCR. For the in vitro release assay, the static Franz vertical diffusion cell device was used. For in vivo availability, blood samples were collected at different time intervals and analyzed by high performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS). Results: the mean diameter of MET-loaded PLGA nanoparticles was in the range of 457.1 ± 48.9 nm (p <0.05) with a polydispersity index of 0.285 (p <0.05), Z potential of 8.16 ± 1.1 mV (p <0.01) and trapping efficiency (EE) of 66.7 ± 3.73. Treatment with MET 10 mg/kg + PLGA showed a low concentration of inflammatory cells, weak immunostaining for RANKL, Cathepsin K, OPG and osteocalcin. Decreased IL-1ß and TNF-α levels (p <0.05), increased AMPK gene expression (p <0.05) and decreased NF-κB p65, HMGB1 and TAK-1 (p <0. 05). The 10 mg/kg MET + PLGA was released in the in vitro assay suggesting a kinetic model of parabolic diffusion with a release profile that reaches 50% of its content in 2h and remains in constant release around 60% until the end of 6h . The in vivo assay showed the apparent volume of distribution Vz/F (10 mg/kg MET + PLGA, 46.31 mL/kg vs. 100 mg/kg MET + PLGA, 28.8 mL/kg) and the mean MRTinf residency (PLGA + MET 10 mg/kg, 37.66h vs. MET 100 mg/kg, 3.34h). Conclusion: MET-loaded PLGA decreased inflammation and bone loss in periodontitis in diabetic rats. 10 mg/kg MET + PLGA had a slower rate of elimination compared to 100 mg/kg MET. The formulation modifies pharmacokinetic parameters such as apparent volume of distribution and mean residence time (AU).


Subject(s)
Animals , Rats , Periodontal Diseases/therapy , Polylactic Acid-Polyglycolic Acid Copolymer/adverse effects , Metformin/adverse effects , In Vitro Techniques/methods , Biological Availability , Analysis of Variance , Rats, Wistar , Hypoglycemic Agents/adverse effects , Anti-Inflammatory Agents/adverse effects
3.
Acta Pharmaceutica Sinica ; (12): 2503-2511, 2022.
Article in Chinese | WPRIM | ID: wpr-937042

ABSTRACT

In order to meet the clinical needs of long-acting sustained-release thienorphine, injectable thienorphine loaded microspheres were developed, and the accelerated stability study was carried out to explore the suitable storage and transportation conditions of the microspheres. Using poly(lactic-co-glycolic acid) (PLGA) as carrier material, 3 batches of microspheres were prepared in pilot scale with emulsion solvent evaporation method. By investigating the in vitro release of thienorphine loaded microspheres at 37, 45, 52, and 60 ℃, and applying the Arrhenius equation, the linear relationship between the release rate constant (lgk) and the temperature (1/T) was established to obtain the equation: lgk = -8.073/T + 24.35 (R2 = 0.985 3), which showed that the release of microspheres at high temperature can be used to predict the release in vitro at 37 ℃, and 52.0 ± 0.5 ℃ was selected as the accelerated release condition in vitro. The quality research methods were established to investigate the changes of critical quality attributes such as microsphere morphology, drug loading, particle size and distribution, polymer molecular weight, and the related substances under accelerated conditions. The difference factor f1 and similarity factor f2 were used to assess the similarity of release behavior under accelerated conditions. The results showed that under the accelerated experimental conditions of 25 ± 2 ℃ and relative humidity (RH) 60% ± 5%, the critical quality attributes of injectable thienorphine loaded microspheres had no significant change in 6 months, suggesting that the long-term storage condition could be 5 ± 3 ℃.

4.
Chinese Journal of Anesthesiology ; (12): 1343-1347, 2022.
Article in Chinese | WPRIM | ID: wpr-994115

ABSTRACT

Objective:To develop a novel sustained-release local anesthetic microspheres and evaluate the effects on sciatic nerve block in rabbits.Methods:The magnetic lidocaine microspheres were prepared by W 1/O/W 2 compound emulsion method, investigating their external morphology, measuring the magnetic response characteristics by the VSM and draw the hysteresis loop.The encapsulation efficiency and drug-loading rate were calculated, and the cumulative release curves in vitro were drawn.Fifteen healthy rabbits (half male and half female), aged 5-6 months, weighing 3.0-3.5 kg, were selected for sciatic nerve block and divided into 3 groups ( n=5 each) using a random number table method: magnetic response lidocaine microspheres group (PL group), normal saline control group (C group) and lidocaine group (L group). Magnetic response lidocaine microsphere buffer 2 ml, normal saline 2 ml and 2% lidocaine 2 ml were injected around the rabbit sciatic nerve through a catheter in PL, C and L groups, respectively.The applied magnetic field was withdrawn at 60 h after injection.Before injection (T 0) and at 30 min and 2 , 8, 16, 24, 48, 60, 62 and 64 h after injection (T 1-9), the compound action potentials and conduction velocities of bilateral sciatic nerve trunks were measured, and block was assessed using toe reflex score and modified Tarlov score. Results:The magnetic lidocaine microspheres were brown in color and observed as monodisperse, regular spheres with a diameter of (9±3) μm, an encapsulation rate of 46.18%, a drug loading of 6.02%, and a superparamagnetic release rate of 97% in vitro at 60 h. The hysteresis loop passed through the origin and no hysteresis occurred with the absence of an external magnetic field.Compared with C group, the action potentials and conduction velocities of the sciatic nerve, toe reflex score and modified Tarlov score were significantly decreased at T 1-T 8 in PL group ( P<0.05). Compared with L group, the action potentials and conduction velocities of the sciatic nerve were significantly increased at T 1, the action potential was decreased at T 2-T 8, the conduction velocity was decreased at T 3-T 8, the toe reflex score was increased at T 1 and decreased at T 3-T 8, and the modified Tarlov score was increased at T 1 and T 2 and decreased at T 3-T 8 in PL group ( P<0.05). Conclusions:Magnetic response lidocaine microsphere is successfully developed with good magnetic responsiveness and release and can prolong the sciatic nerve block time in rabbits.

5.
Chinese Journal of Orthopaedic Trauma ; (12): 1075-1082, 2022.
Article in Chinese | WPRIM | ID: wpr-992670

ABSTRACT

Objective:To evaluate the physicochemical properties, degradation and drug release behaviour, cytocompatibility and bacteriostatic properties in vitro of porous magnesium alloy scaffolds containing vancomycin/poly(lactic-co-glycolic acid) (PLGA). Methods:Porous magnesium scaffolds (Mg-2Zn-0.3Ca) were prepared using the template replication technique. The MgF 2 surface layer was obtained by high temperature fluorination. The vancomycin/PLGA porous magnesium alloy drug-loaded scaffolds were obtained by homogeneous lifting after submersion in a dichloromethane solution of PLGA containing vancomycin hydrochloride. According to the products at each stage of the preparation (scaffolds of magnesium alloy, magnesium fluoride alloy, PLGA coated magnesium fluoride alloy, and vancomycin/PLGA magnesium fluoride alloy), they were divided into an Mg group, an MgF 2 group, a PLGA group, and a vancomycin/PLGA group. Immediately after preparation, the material science characterization, degradation rate, drug release rate, antibacterial properties, hemocompatibility, and cell proliferation and differentiation ability of the scaffolds were measured and evaluated. Results:Vancomycin-loaded magnesium alloy scaffolds were successfully prepared with an average porosity of 66.39%. Their degradation rate [(0.540±0.102) mm/year] was significantly lower than that of the Mg ones [(10.048±0.297) mm/year] ( P<0.05). Their pH of degradation in Hank equilibrium salt solution was close to the physiological pH. Their release of vancomycin was fast in the first 48 h and gradually slowed down after 48 h. Their cumulative drug concentration reached a maximum of 43 mg/L at d 11; their vancomycin was still released slowly after d 11. The antimicrobial rate in the vancomycin/PLGA group (97.89%±0.28%) was significantly higher than that in the Mg group (74.92%±2.20%), the MgF 2 group (78.46%±2.59%) and the PLGA group (61.08%±4.21%) ( P<0.05). Their hemolysis rate (0.55%) was much lower than the requirement of ISO 10993-4 (5%). The extract liquid from them promoted the proliferation of rat bone marrow mesenchymal stem cells (BMSCs), showing a gradually increased proliferation rate from d1 (104.80%±5.13%) to d3 (112.36%±2.07%) and d7 (127.79%±4.61%). The calcium nodules in BMSCs were significantly increased at d 14, with an OD value of absorbance of 1.189±0.020, significantly higher than that in the Mg group (0.803±0.020), the MgF 2 group (0.878±0.028) and the PLGA group (0.887±0.026) ( P<0.05). Conclusion:Vancomycin/PLGA-loaded porous magnesium alloy scaffolds exhibit good material properties, antibacterial properties, biocompatibility and osteogenic properties in vitro.

6.
Archives of Orofacial Sciences ; : 35-50, 2022.
Article in English | WPRIM | ID: wpr-964084

ABSTRACT

ABSTRACT@#Various grafting materials are utilised to facilitate regeneration. There is currently a paradigm shift towards applying poly lactic-co-glycolic acid (PLGA), which is regarded as an excellent scaffold for tissue engineering. Concentrated growth factor (CGF) has also been reported to promote wound healing. Nevertheless, the role of PLGA microspheres as a substitute for bone graft material with CGF in bone regeneration remains unclear. This study was designed to evaluate the effect of CGF with PLGA on bone formation and the expression of alkaline phosphatase (ALP) following socket preservation. PLGA microspheres were prepared using double solvent evaporation method and observed under scanning electron microscopy (SEM). A 6 mL of rabbit’s blood was collected from the marginal ear vein and centrifuged to obtain CGF. Blood was also collected for ALP assessment from 24 New Zealand White (NZW) male rabbits subjected to the first upper left premolar extraction. Sockets were filled with CGF, PLGA, CGF+PLGA or left empty and observed with microscopic computed tomography (micro-CT) at four weeks and eight weeks. The SEM image revealed a spherical shape with interconnected pores on the surface of the PLGA particles. Repeated measures ANOVA were used to evaluate the effect of time and treatment (p < 0.05) with significant differences in bone width, height, volume, volume fraction and expression of ALP was observed with CGF+PLGA. Both CGF and PLGA have the potential as the alternative grafting materials and this study could serve as an ideal benchmark for future investigations on the role of CGF+PLGA in bone regeneration enhancement.


Subject(s)
Bone Regeneration , Platelet-Derived Growth Factor , Polylactic Acid-Polyglycolic Acid Copolymer
7.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 202-205, 2021.
Article in Chinese | WPRIM | ID: wpr-862501

ABSTRACT

@#The development of materials science is of great significance to the treatment of dental pulp diseases. Poly lactic acid glycolic acid (PLGA) copolymer is an organic macromolecule compound that is widely used in the preparation of biomedical materials. In recent years, PLGA, as a drug/molecular loaded system and tissue regeneration scaffold, has shown prospects for application in the treatment of dental pulp diseases. This paper will review the application of PLGA in the treatment of dental pulp diseases and provide a basis for its further development and utilization. The results of the literature review show that PLGA is a drug/molecular delivery system that is mainly used in the improvement of pulp capping materials, root canal disinfectant and apexification materials. PLGA-improved pulp capping agents can prolong the action time of the drug and reduce toxicity. The modified root canal disinfectant can realize the sustained release of drug, make the drug penetrate deeper into the subtle structure, and contact more widely with the pathogenic bacteria. The modified apexification materials can provide more convenient administration methods for apexifixment. As a scaffold for tissue engineering, PLGA is mainly used in the study of pulp regeneration. The optimization of PLGA physical properties and action environment can provide a more suitable microenvironment for seed cells to proliferate and differentiate. How to utilize the advantages of PLGA to develop a more suitable material for endodontic application needs further study.

8.
Journal of China Pharmaceutical University ; (6): 52-59, 2021.
Article in Chinese | WPRIM | ID: wpr-873579

ABSTRACT

@#To prepare a minocycline hydrochloride microsphere depot and evaluate its release performance and physicochemical properties, poly (lactic-co-glycolic acid) (PLGA) was used as raw material, the minocycline hydrochloride microspheres were prepared by electrospray, and the morphology and size distribution of the microspheres were characterized by polarizing microscopy and scanning electron microscopy (SEM). The microspheres were then mixed with sucrose acetate isobutyrate (SAIB) depot at a ratio of 1:10 to form a minocycline hydrochloride microsphere depot, and its release performance and porosity changes were evaluated. The results showed that the microspheres had smooth surface and the diameter was (5.294 ± 1.222) μm. After the microspheres were added into SAIB depot, the burst release of minocycline hydrochloride significantly decreased from 60% to 3.27% at the first day, and then the release lasted for 42 days . Additionally, the porosity of the depot increased rapidly from (12.53 ± 0.43)% to (32.53 ± 0.43)% during days 0-15, and increased slowly from (32.53 ± 0.43)% to (33.81 ± 0.54)% during days 15-45. The minocycline hydrochloride microsphere depot prepared in this study is expected to be an effective way for the application of minocycline hydrochloride for its good release performance and simple preparation process.

9.
J Cancer Res Ther ; 2020 May; 16(2): 263-268
Article | IMSEAR | ID: sea-213810

ABSTRACT

Background: Developing the natural medicine that allow for the specific targeting cytotoxicity is a very important research area in the development of anti-tumor drugs. Aims and Objectives: This study was conducted to determine the targeted inhibitory effects of luteolin-loaded Her-2-poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) on gastric cancer cells and to delineate the mechanism underlying the inhibition of tumors by luteolin. Materials and Methods: Luteolin-loaded Her-2-PLGA NPs (Her-2-NPs) were prepared, physically and chemically characterized, and their effects on gastric cancer cells were investigated. The rate of NP uptake by cells and the cell morphology were observed using confocal microscopy; the rates of cell proliferation and apoptosis were identified using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay and flow cytometry, respectively; and the mRNA and protein expression levels of forkhead box protein O1 (FOXO1) were determined using quantitative polymerase chain reaction and Western blotting, respectively. Results: Compared with nontargeted microspheres, Her-2-NPs led to significantly enhanced uptake of luteolin by SGC-7901 cells. Luteolin-loaded Her-2-NPs also significantly inhibited the proliferation of gastric cancer cells, weakened their migratory ability, and increased both the mRNA and protein expression levels of FOXO1. Conclusion: Luteolin-loading of Her-2-NPs could potentially be used as a novel anti-cancer drugs for targeted cancer therapy.

10.
Chinese Journal of Tissue Engineering Research ; (53): 3974-3980, 2020.
Article in Chinese | WPRIM | ID: wpr-847318

ABSTRACT

BACKGROUND: Bone tissue engineering has provided a novel ideal for treating bone defects in clinic. This study is the first to combine traditional Chinese medicine with the nanostructures of tissue-engineered scaffolds in order to explore and construct a new bone tissue substitute material for the treatment of bone defects. OBJECTIVE: To investigate the osteogenic activity of icariin (ICA)/hydroxyapatite (HA)/poly(lactic-co-glycolic acid) (PLGA) composite scaffolds. METHODS: A HA/PLGA composite scaffold was prepared by physical blending of HA and PLGA, and was then soaked in ICA solution of different concentrations to obtain the HA/ICA/PLGA scaffold. Rabbit bone marrow mesenchymal stem cells were used to evaluate the cell adhesion, proliferation, osteogenesis and cytotoxicity of the composite scaffold. The cell adhesion, proliferation and cytotoxicity were detected by MTT method. The activities of alkaline phosphatase and osteocalcin were detected by ELISA. The expression levels of osteogenic genes and proteins were detected by fluorescence quantitative PCR and western blot assay, respectively. RESULTS AND CONCLUSION: Adding appropriate amount of HA into PLGA could improve the mechanical strength of the scaffold, and 10% HA had the best effect with tensile strength of (1.67±0.37) MPa, and compression modulus of (4.17±1.62) MPa, and nanostructure would be formed on the surface of the scaffold. The nanostructure could promote the adhesion of bone marrow mesenchymal stem cells on the surface of the scaffold. ICA did not affect the proliferation of bone marrow mesenchymal stem cells on the composite scaffold. However, the HA/PLGA composite scaffold soaked in 1.00 µmol/L ICA aqueous solution had the optimal osteogenic differentiation function, and the expression levels of alkaline phosphatase, osteocalcin, osteogenic related genes and proteins (Runx-2 and COL I) were increased. The ICA/HA/PLGA scaffold had no cytotoxicity. These results suggest that HA (10%)/ICA (1.00 µmol/L)/PLGA scaffold has good mechanical properties, osteogenesis and biocompatibility, which has the potential to be a favorable scaffold for bone tissue engineering.

11.
Malaysian Journal of Medicine and Health Sciences ; : 1-5, 2020.
Article in English | WPRIM | ID: wpr-875800

ABSTRACT

@#Introduction: : Ginseng is a type of traditional medicine that has been used for thousand years to treat various diseases and has been proven effective in treating cardiovascular diseases. Incorporation of polyaniline (PANI) which is a type of conductive polymer together with ginseng into poly(lactic-co-glycolic acid) (PLGA) microcapsules is necessary for the treatment of cardiovascular diseases as the polymer will control drug release and the electroconductivity of PANI is beneficial on myocardium cells. Methods: Therefore, this project involved the encapsulation of ginseng inside PLGA/PANI microcapsules. The encapsulation of ginseng inside the microcapsules was verified through the identification of chemical composition of ginseng, PLGA and PANI using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Results: The results of scanning electron microscope (SEM) showed the formation of microspheres where the microcapsule size was decreased from 3.14±1.87 μm to 1.98±1.30 μm as the concentration of PANI increased. The distribution of microcapsules size was more homogeneous in the high concentration of PANI as been determined through the histogram analysis. In addition, the fluorescence analysis demonstrated the efficiency of ginseng encapsulation inside PLGA/PANI microcapsules through the appearance of stained ginseng inside the microcapsules. Conclusion: As a conclusion, the ginseng was successfully encapsulated within PLGA/PANI microcapsules that will be beneficial in drug delivery application, specifically in the cardiovascular area.

12.
J Cancer Res Ther ; 2019 May; 15(3): 480-490
Article | IMSEAR | ID: sea-213645

ABSTRACT

Objective: The aim of the study to develop surface modified targeted moiety α-tocopherol (α-t) encapsulated with 5-fluorouracil (5-FU)-poly-D, L-lactic-co-glycolic acid nanoparticles (PLGA NPs) toward the anticancer activity against oral squamous cell carcinoma (OSCC). Materials and Methods: 5-FU was conjugated with the polymer, PLGA by ionic cross-linking and α-tocopherol use as a functionalized surface moiety. Characterization, drug entrapment efficiency, and in-vitro drug release system were optimized at different pH 7.4 and pH 4.5. The in-vitro cell was performed to optimize the anticancer activity through MTT assay and apoptotic staining assay was also performed by flow cytometry to evaluate the cellular apoptotic activity and cellular uptake. Results: The particle size was distributed within an average range of 145–162 nm, the polydispersity index values lie 0.16–0.30, and the surface charge was at the negative side, –17mV to –23mV. The in vitro drug release system showed more sympathetic situation at pH 7.4 as compared to pH 4.5, for targeted NPs, approximately 86% and 69%, respectively. The non-targeted 5-FU-PLGA NPs showed drug release of 83% and 64% at pH 7.4 and 4.5 subsequently. In vitro anticancer activity confirmed the intense inhibition by α-t-FU-PLGA NPs of 79.98% after 96 h treatment of SCC15 cells and confirmed the steady-state inhibition of 83.74% after 160 h incubation in comparison to 5-FU-PLGA NPs. Subsequently, the early apoptosis, 27.98%, and 16.45%, and late apoptosis, 47.29%, and 32.57%, suggested the higher apoptosis rate in targeted NPs against OSCC. Conclusions: The surface modified α-t-FU-PLGA NP was treated over SCC15 cells, and the oral cancer cells have shown the high intensity of cellular uptake, which confirmed that the target moiety has successfully invaded over the surface of cancer cells and shown advanced targeted delivery against OSCC

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 87-93, 2019.
Article in Chinese | WPRIM | ID: wpr-802528

ABSTRACT

Objective: To prepare Juglone-loaded poly lactic-co-glycolic acid nanoparticles (Jug-PLGA-NPs), and investigate their physicochemical properties, release characteristics in vitro and anti-tumor activities on A375 melanoma cells in vitro. Method: Jug-PLGA-NPs were prepared by emulsification-solvent evaporation method. Then the particle size, encapsulation efficiency, drug loading rate and in vitro release characteristics were investigated. Fluorescence microscopy was used to observe the uptake of PLGA-NPs in vitro. The distribution of PLGA-NPs in BALB/c nude mice after tail vein injection was observed by the small living animal imaging system. Their inhibition effect on proliferation of A375 cells was detected by thiazolyl blue tetrazolium bromide (MTT) assay. Apoptosis rate and cell cycle detection were performed by flow cytometry. Western blot was used to determine the protein kinase B (Akt), phosphorylated Akt (p-Akt) and cyclinD1. Result: The average particle size of the prepared Jug-PLGA-NPs was (149.6±21.5) nm, entrapment rate of (68.39±2.51)%, and drug-loading rate of (5.07±0.98)%, showing good sustained-release characteristics. PLGA-NPs showed good penetration and targeting properties in cellular uptake in vitro and in vivo imaging. Different concentrations of Jug-PLGA-NPs could significantly inhibit the proliferation and promote apoptosis of A375 cells in a time and concentration dependent manner (P1 expression (P0/G1 phase (PConclusion: The Jug-PLGA-NPs are easy to prepare and have good sustained-release characteristics, tumor targeting and anti-tumor ability, providing a new pharmaceutical dosage form for the future clinical application of Jug.

14.
Chinese Journal of Ultrasonography ; (12): 174-180, 2019.
Article in Chinese | WPRIM | ID: wpr-754797

ABSTRACT

To prepare RGD peptide modified perfluorohexane ( PFH ) polymer nanoparticles RGD‐PFH‐NPs and investigate its basic characteristics ,targeting ability and combine with low‐intensity focused ultrasound ( LIFU ) for ultrasonic imaging in vivo and vitro . Methods Targeted nanoparticles RGD‐PFH‐NPs were prepared by double emulsifying method and carbodiimide method . T heir morphology and distribution were observed . T he particle size ,zeta potential and connection probability were measured . T he phase‐changed properties and the LIFU‐induced imaging ability in contrast‐enhanced ultrasound mode of RGD‐PFH‐NPs were investigated in vivo and vitro . T he tagetability of nanoparticles to human gastric cancer cell line M GC803 and tumor‐bearing nude mouse were observed through targeting group and non‐targeting group . Results T he prepared sample was milky w hite suspension liquid . T he RGD‐PFH‐NPs were spherical uniform size ,good dispersion w hen observed through the optical microscope and transmission electron microscopy . T he particle size was ( 259 .3 ± 42 .6) nm and the Zeta potential was ( -17 .6+5 .4) mV . T he connection probability of RGD peptide was 89 .13% . With 70℃ water bath and LIFU stimulation RGD‐PFH‐NPs can remarkably change phase and show good imaging performance in both conventional ultrasound and contrast‐enhanced ultrasound mode in vivo and vitro . The connection probability to M GC803 cells in targeting group ( RGD‐PFH‐NPs ) and the non‐targeting group( PFH‐NPs) were 82 .59% and 2 .96% . T he accumulation of nanoparticles in the RGD‐PFH‐NPs group in tumor tissues was significantly higher than that in the non‐targeted PFH‐NPs group( P) . Conclusions The constructed nanoparticles RGD‐PFH‐NPs ,providing contrast‐enhanced ultrasonic imaging and excellent targeting ability to human gastric cancer cells M GC803 and gastric cancer tissue ,is expected to become a new type of gastric cancer targeted ultrasound contrast agent .

15.
Asian Pacific Journal of Tropical Medicine ; (12): 353-364, 2019.
Article in Chinese | WPRIM | ID: wpr-951223

ABSTRACT

Objective: To prepare and characterize poly lactic-co-glycolic acid (PLGA) nanoparticles loaded with soluble leishmanial antigen or autoclaved leishmanial antigen and explore in vitro and in vivo immunogenicity of antigen encapsulated nanoparticles. Methods: Water/oil/water double emulsion technique was employed to synthesize PLGA nanoparticles, and scanning electron microscopy, Fourier transform infrared spectroscopy and Zeta-potential measurements were used to identify the characteristics of nanoparticles. Cytotoxicity of synthetized nanoparticles on J774 macrophage were investigated by MTT assays. To determine the in vitro immunostimulatory efficacies of nanoparticles, griess reaction and ELISA was used to measure the amounts of NO and cytokines. During the in vivo analysis, Balb/c mice were immunized with vaccine formulations, and protective properties of nanoparticles were measured by Leishman Donovan unit in the liver following the infection. Cytokine levels in spleens of mice were determined by ELISA. Results: MTT assay showed that neither soluble leishmanial antigen nor autoclaved leishmanial antigen encapsulated nanoparticles showed cytotoxicity against J774 macrophage cells. Contrary to free antigens, both autoclaved leishmanial antigen-nanoparticle and soluble leishmanial antigen-nanoparticle formulations led to a 10 and 16-fold increase in NO amounts by macrophages, respectively. Leishman Donovan unit calculations revealed that soluble leishmanial antigen-nanoparticles and autoclaved leishmanial antigen-nanoparticles yielded 52% and 64% protection against visceral leishmaniasis in mouse models. Besides, in vitro and in vivo tests demonstrated that by increasing IFN-γ and IL-12 levels and inhibiting IL-4 and IL-10 secretions, autoclaved leishmanial antigen-nanoparticles and soluble leishmanial antigennanoparticles triggered Th1 immune response. Conclusions: Both autoclaved leishmanial antigen-nanoparticles and soluble leishmanial antigen-nanoparticles formulations provide exceptional in vitro and in vivo immunostimulatory activities. Hence, PLGA-based antigen delivery systems are recommended as potential vaccine candidates against visceral leishmaniasis.

16.
Asian Pacific Journal of Tropical Medicine ; (12): 353-364, 2019.
Article in English | WPRIM | ID: wpr-846862

ABSTRACT

Objective: To prepare and characterize poly lactic-co-glycolic acid (PLGA) nanoparticles loaded with soluble leishmanial antigen or autoclaved leishmanial antigen and explore in vitro and in vivo immunogenicity of antigen encapsulated nanoparticles. Methods: Water/oil/water double emulsion technique was employed to synthesize PLGA nanoparticles, and scanning electron microscopy, Fourier transform infrared spectroscopy and Zeta-potential measurements were used to identify the characteristics of nanoparticles. Cytotoxicity of synthetized nanoparticles on J774 macrophage were investigated by MTT assays. To determine the in vitro immunostimulatory efficacies of nanoparticles, griess reaction and ELISA was used to measure the amounts of NO and cytokines. During the in vivo analysis, Balb/c mice were immunized with vaccine formulations, and protective properties of nanoparticles were measured by Leishman Donovan unit in the liver following the infection. Cytokine levels in spleens of mice were determined by ELISA. Results: MTT assay showed that neither soluble leishmanial antigen nor autoclaved leishmanial antigen encapsulated nanoparticles showed cytotoxicity against J774 macrophage cells. Contrary to free antigens, both autoclaved leishmanial antigen-nanoparticle and soluble leishmanial antigen-nanoparticle formulations led to a 10 and 16-fold increase in NO amounts by macrophages, respectively. Leishman Donovan unit calculations revealed that soluble leishmanial antigen-nanoparticles and autoclaved leishmanial antigen-nanoparticles yielded 52% and 64% protection against visceral leishmaniasis in mouse models. Besides, in vitro and in vivo tests demonstrated that by increasing IFN-γ and IL-12 levels and inhibiting IL-4 and IL-10 secretions, autoclaved leishmanial antigen-nanoparticles and soluble leishmanial antigennanoparticles triggered Th1 immune response. Conclusions: Both autoclaved leishmanial antigen-nanoparticles and soluble leishmanial antigen-nanoparticles formulations provide exceptional in vitro and in vivo immunostimulatory activities. Hence, PLGA-based antigen delivery systems are recommended as potential vaccine candidates against visceral leishmaniasis.

17.
Chinese Journal of Ultrasonography ; (12): 173-179, 2019.
Article in Chinese | WPRIM | ID: wpr-745155

ABSTRACT

Objective To prepare RGD peptide modified perfluorohexane ( PFH ) polymer nanoparticles RGD-PFH-NPs and investigate its basic characteristics ,targeting ability and combine with low-intensity focused ultrasound ( LIFU ) for ultrasonic imaging in vivo and vitro . Methods Targeted nanoparticles RGD-PFH-NPs were prepared by double emulsifying method and carbodiimide method . Their morphology and distribution were observed . The particle size ,zeta potential and connection probability were measured . The phase-changed properties and the LIFU-induced imaging ability in contrast-enhanced ultrasound mode of RGD-PFH-NPs were investigated in vivo and vitro . The tagetability of nanoparticles to human gastric cancer cell line MGC803 and tumor-bearing nude mouse were observed through targeting group and non-targeting group . Results The prepared sample was milky white suspension liquid . The RGD-PFH-NPs were spherical uniform size ,good dispersion when observed through the optical microscope and transmission electron microscopy . The particle size was ( 259 .3 ± 42 .6) nm and the Zeta potential was ( -17 .6+5 .4) mV . The connection probability of RGD peptide was 89 .13% . With 70℃ water bath and LIFU stimulation RGD-PFH-NPs can remarkably change phase and show good imaging performance in both conventional ultrasound and contrast-enhanced ultrasound mode in vivo and vitro . The connection probability to MGC803 cells in targeting group ( RGD-PFH-NPs ) and the non-targeting group( PFH-NPs)were 82 .59% and 2 .96% . The accumulation of nanoparticles in the RGD-PFH-NPs group in tumor tissues was significantly higher than that in the non-targeted PFH-NPs group( P) . Conclusions The constructed nanoparticles RGD-PFH-NPs ,providing contrast-enhanced ultrasonic imaging and excellent targeting ability to human gastric cancer cells MGC803 and gastric cancer tissue ,is expected to become a new type of gastric cancer targeted ultrasound contrast agent .

18.
Journal of Shanghai Jiaotong University(Medical Science) ; (12): 155-160, 2018.
Article in Chinese | WPRIM | ID: wpr-843773

ABSTRACT

Objective: To prepare a bacterial outer membrane vesicle (OMV) coated poly (lactic-co-glycolic acid) copolymer (PLGA) nanoparticle loaded with ovalbumin (OVA) and evaluate its intranasal immune effect in mice. Methods: OMV was prepared by ultrafiltration concentration method. OVA loaded PLGA nanoparticle (NP) was prepared by emulsion-solvent evaporation method. OMV coated PLGA nanoparticle (OMV-PLGA NP) loaded with OVA was prepared by extrusion method and characterized. BALB/c mice were intranasally immunized and specific sIgA levels in nasal wash, jejunum and fecal pellet were determined by ELISA. Results: Size of OVA loaded OMV-PLGA NP was (234.4±22.9) nm. The shell-core structure of OVA loaded OMV-PLGA NP was proved by transmission electron microscope. After 14 d of administration, sIgA antibody levels in nasal wash, jejunum and fecal pellet of OVA loaded OMV-PLGA NP treated group were the highest in all treated groups. Compared with the group treated with OMV and OVA, OVA-specific sIgA antibody level in nasal wash, jejunum and fecal pellet of OVA loaded OMV-PLGA NP treated group was increased 1.6, 2.1 and 1.7 times, respectively. Compared with the group treated with OMV and OVA, OMV-specific sIgA antibody level in nasal wash, jejunum and fecal pellet of OVA loaded OMV-PLGA NP treated group was all increased 1.5 times. Conclusion: This novel nanoparticle drug delivery system can simultaneously delivery OVA and OMV to antigen presenting cells, resulting in stronger mucosal immune response in mice.

19.
Journal of Jilin University(Medicine Edition) ; (6): 438-443, 2018.
Article in Chinese | WPRIM | ID: wpr-841950

ABSTRACT

Objective: To prepare the sustained release system of icariin (ICA) @ gelatin nanoparticles (GNPs)-polyactic-co-glycolic acid (PLGA) (ICA @ GNPs-PLGA), and to optimize the conditions. Methods: ICA@GNPs-PLGA sustained release system was prepared using two-step desolvation method and S/O/W emulsion solvent-evaporation technique. The effects of different conditions, such as the PLGA: GNPs mass ratio and the total quality of ICA added on the entrapment efficiency (EE) of ICA® GNPs-PLGA composite microspheres were detected to optimize the preparation process. The surface morphology of GNPs and ICA @ GNPs-PLGA composite microspheres were observed by SEM. The EE and the release results of ICA@GNPs-PLGA in the sample were determined with HPLC Results: The prepared composite microspheres and nanocomplex were were white powder. The SEM results showed that the composite microspheres and nanocomplexs were spherical, the surfaces were smoothy, and the particle size distribution range was 4-12 μm and 150-200 nm, respectively, relatively uniform At a GNPs mass fraction of 6 mg, the critical concentration of PLGA in DCM ranged within 0.5%-1.0%. At a GNPs mass fraction of 12 mg, the critical concentration of PLGA in DCM ranged within 1.0%-2.0%. However, at a critical PLGA mass fraction lower than 0.25%, no fully formed composite microspheres were observed. Within the critical concentration, the average EE of ICA@ GNPs-PLGA microspheres was higher than (62.00 ± 1.25)%. In addition, the EE of ICA in the microspheres was negatively correlated with the quality of ICA added. The accumulative release rate was less than in 24 h and it was 65.21% in 40 d. Conclusion: The ICA@GNPs-PLGA microspheres with homogeneous particle size distribution, high EE, low initial burst and without agglomeration can be acquired under the optimized conditions.

20.
Acta Pharmaceutica Sinica ; (12): 127-132, 2018.
Article in Chinese | WPRIM | ID: wpr-779855

ABSTRACT

Severe acute pancreatitis (SAP) is characterized by both local and systemic inflammatory responses. This study was designed to develop a site-specific delivery strategy for SAP therapy using celastrol (CLT). First, murine RAW264.7 cells were used as a model of macrophage cell line, cell membranes were obtained by emptying intracellular contents via hypotonic lysing, mechanical membrane disruption, and differential centrifugation. Poly(ethylene glycol) methyl ether-block-poly(lactic-co-glycolic acid) (PEG-PLGA) nanoparticles (NPs) were then prepared by sonication. With the collected membrane materials, macrophage membrane coated PEG-PLGA NPs (RNPs) were then prepared by extrusion through a 400 nm polycarbonate membrane. Biodistribution study in rats with SAP showed RNPs selectively accumulated in the inflamed pancreatic tissues. Compared with CLT loaded NPs, CLT loaded RNPs were proven to effectively attenuate local pancreatic inflammation and systemic inflammation in rats with SAP.

SELECTION OF CITATIONS
SEARCH DETAIL