Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 521-528, 2015.
Article in English | WPRIM | ID: wpr-812515

ABSTRACT

The aim of the present study was to determine the preventive effects of the polysaccharide of Larimichthys crocea swim bladder (PLCSB) on CCl4-induced hepatic damage in ICR mice. The in vitro preventive effects of PLCSB on CCl4-induced liver cytotoxic effect were evaluated in BRL 3A rat liver cells using the MTT assay. The serum levels of AST, ALT, and LDH in mice were determined using commercially available kits. The levels of IL-6, IL-12, TNF-α, and IFN-γ were determined using ELISA kits. The pathological analysis of hepatic tissues was performed with H and E staining, and the gene and protein expressions were determined by RT-PCR and Western blotting, respectively. PLCSB (20 μg·mL(-1)) could increase the growth of BRL 3A rat liver cells treated with CCl4. The serum levels of AST, ALT, and LDH were significantly decreased when the mice were treated with two doses of PLCSB, compared with the control mice (P < 0.05). PLCSB-treated groups also showed reduced levels of the serum pro-inflammatory cytokines IL-6, IL-12, TNF-α, and IFN-γ. PLCSB could decrease the liver weight, compared to the CCl4-treated control mice. The histopathology sections of liver tissues in the 100 mg·kg(-1) PLCSB group indicated that the animals were recovered well from CCl4 damage, but the 50 mg·kg(-1) PLCSB group showed necrosis to a more serious extent. The 100 mg·kg(-1) PLCSB group showed significantly decreased mRNA and protein expression levels of NF-κB, iNOS, and COX-2, and increased expression of IκB-α compared with the CCl4-treated control group. In conclusion, PLCSB prevented from CCl4-induced hepatic damage in vivo.


Subject(s)
Animals , Male , Animal Structures , Chemistry , Biological Products , Pharmacology , Therapeutic Uses , Carbon Tetrachloride , Carbon Tetrachloride Poisoning , Drug Therapy , Metabolism , Pathology , Chemical and Drug Induced Liver Injury , Metabolism , Pathology , Cyclooxygenase 2 , Metabolism , Cytokines , Blood , I-kappa B Proteins , Metabolism , Inflammation Mediators , Blood , Liver , Metabolism , Pathology , Mice, Inbred ICR , NF-KappaB Inhibitor alpha , NF-kappa B , Metabolism , Necrosis , Nitric Oxide Synthase Type II , Metabolism , Perciformes , Polysaccharides , Pharmacology , Therapeutic Uses , RNA, Messenger , Metabolism
2.
The Korean Journal of Physiology and Pharmacology ; : 183-190, 2014.
Article in English | WPRIM | ID: wpr-727677

ABSTRACT

This project's aim was to determine the reserpine-induced gastric ulcer preventive effect of polysaccharide of Larimichthys crocea swim bladder (PLCSB) in ICR mice. The anti-gastric ulcer effects of polysaccharide of Larimichthys crocea swim bladder was evaluated in mice model using morphological test, serum levels assay, cytokine levels assay, tissue contents analysis, reverse transcription-polymerase chain reaction (RT-PCR) analysis and western bolt assay. High concentration (50 mg/kg dose) of PLCSB reduced IFN-gamma as compared to low concentration (25 mg/kg dose) and control mice. SS and VIP serum levels of PLCSB treated mice were higher than those of control mice, and MOT and SP serum levels were lower than control mice. Gastric ulcer inhibitory index of PLCSB treatment groups mice were much lower than control mice, and the high concentration treated mice were similar to the ranitidine treated mice. The SOD and GSH-Px activities of PLCSB treated mice were higher than control mice, close to normal mice and ranitidine treated mice. PLCSB treated mice also showed the similar contents of NO and MDA to normal group. By RT-PCR and western blot assay, PLCSB significantly induced inflammation in tissues of mice by downregulating NF-kappaB, iNOS, and COX-2, and upregulating IkappaB-alpha . These results suggest that PLCSB showed a good gastric ulcer preventive effect as the gastric ulcer drug of ranitidine. Polysaccharide of Larimichthys crocea swim bladder may be used as a drug material from marine products.


Subject(s)
Animals , Mice , Blotting, Western , Inflammation , Mice, Inbred ICR , NF-kappa B , Ranitidine , Reserpine , Stomach Ulcer , Ulcer , Urinary Bladder
SELECTION OF CITATIONS
SEARCH DETAIL