Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Hanyang Medical Reviews ; : 235-241, 2016.
Article in English | WPRIM | ID: wpr-132261

ABSTRACT

Various microrobots are being studied for potential biomedical applications including targeted cell transportation, precise drug delivery, opening blocked blood vessels, micro-surgery, sensing, and scaffolding. Precise magnetic field control system is a coil system for wireless control of those microrobots for personalized and minimally invasive treatments. The microrobots for possible biomedical applications are fabricated by micro-electro-mechanical systems (MEMS) and nano-electro-mechanical systems (NEMS) technologies. In this review, fabrication technologies for scaffold and ciliary microrobots will be introduced and their control methods will be discussed. Various materials are being used for the fabrication of the microrobot such as SU-8, IP-Dip, IP-L, silicon, etc. The scaffold and ciliary microrobots are fabricated by SU-8, IP-Dip, and IP-L because these materials showed the maximum performance for three-dimensional (3D) microrobots using a 3D laser lithography system. All or part of the structures are coated with nickel and titanium layers after fabrication of the structures for magnetic control and biocompatibility, respectively, of the microrobots.


Subject(s)
Humans , Blood Vessels , Magnetic Fields , Micro-Electrical-Mechanical Systems , Nickel , Silicon , Titanium , Transportation
2.
Hanyang Medical Reviews ; : 235-241, 2016.
Article in English | WPRIM | ID: wpr-132264

ABSTRACT

Various microrobots are being studied for potential biomedical applications including targeted cell transportation, precise drug delivery, opening blocked blood vessels, micro-surgery, sensing, and scaffolding. Precise magnetic field control system is a coil system for wireless control of those microrobots for personalized and minimally invasive treatments. The microrobots for possible biomedical applications are fabricated by micro-electro-mechanical systems (MEMS) and nano-electro-mechanical systems (NEMS) technologies. In this review, fabrication technologies for scaffold and ciliary microrobots will be introduced and their control methods will be discussed. Various materials are being used for the fabrication of the microrobot such as SU-8, IP-Dip, IP-L, silicon, etc. The scaffold and ciliary microrobots are fabricated by SU-8, IP-Dip, and IP-L because these materials showed the maximum performance for three-dimensional (3D) microrobots using a 3D laser lithography system. All or part of the structures are coated with nickel and titanium layers after fabrication of the structures for magnetic control and biocompatibility, respectively, of the microrobots.


Subject(s)
Humans , Blood Vessels , Magnetic Fields , Micro-Electrical-Mechanical Systems , Nickel , Silicon , Titanium , Transportation
SELECTION OF CITATIONS
SEARCH DETAIL