Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Malaysian Journal of Microbiology ; : 463-472, 2022.
Article in English | WPRIM | ID: wpr-979387

ABSTRACT

Aims@#The synergistic bio-activity between oleaginous yeast and microalga has been recognized, which would enhance lipid production as biodiesel feedstock. Nevertheless, yeast and microalga require different conditions for optimal growth. In this study, the locally isolated oleaginous yeast Rhodotorula toruloides and microalga Chaetoceros muelleri were co-cultivated to enhance biomass and lipid production.@*Methodology and results@#The growth characteristics of both yeast and microalga monocultures were initially determined prior to optimizing the co-cultivation conditions. The biomass and lipid productivity of the co-culture were investigated and compared to their monocultures. The results showed that R. toruloides grew actively within 3 days while C. muelleri exhibited more prolonged cultivation, up to 21 days. The co-cultivation could be carried out optimally using growth media at pH 6, light intensity of 15,000 lux and yeast/microalga ratio of 1:2, yielding the highest biomass productivity determined at 0.18 g/l/day and lipid production of 17%. The lipid productivity of the co-culture increased by 42% and 75% as compared to monocultures of yeast and microalga, respectively. Furthermore, the biomass productivity was also higher than the monoculture, about 1.2-fold for the yeast and 13-fold for the microalga.@*Conclusion, significance and impact of study@#The findings revealed that co-cultivation of yeast and microalga is a viable technique for long-term microbial oil production.

2.
Chinese Acupuncture & Moxibustion ; (12): 774-780, 2021.
Article in Chinese | WPRIM | ID: wpr-887481

ABSTRACT

OBJECTIVE@#To explore the mechanism of electroacupuncture (EA) for the regulation of lipid production and improvement in obesity by mediating Wnt/β-catenin pathway through activating silent information regulator 1 (SIRT1).@*METHODS@#Of 75 Wistar male rats, 10 rats were selected randomly as the normal group and fed with standard diet. The rest rats were fed with high-fat diet for 8 weeks to establish the obesity model. Forty rats of successful modeling were randomized into a model group, an EA group, an EA plus inhibitor group (EA+I group) and an agonist group, 10 rats in each one. In the EA group, EA was applied at "Guanyuan" (CV 4), "Zhongwan" (CV 12), "Zusanli" (ST 36) and "Fenglong" (ST 40), with continuous wave, 2 Hz in frequency and around 1 mA in intensity. The needles were retained for 20 min. In the EA+I group, sirtinol solution was injected from caudal vein and EA was exerted simultaneously. In the agonist group, resveratrol solution was given by intragastric administration. The intervention of the above three groups was given once every two days, 3 times a week, consecutively for 8 weeks. Before and after intervention, body mass and Lee's index were recorded in the rats of each group. After intervention, the levels of serum total cholesterol (TC), triglyceride (TG) and free fatty acid (FFA) were detected in the rats of each group. After intervention, the mass of white adipose tissue (WAT) and the area of adipocytes were compared in the rats among the 5 groups. Using Western blot method, the protein expressions of SIRT1, glycogen synthase kinase-3β (GSK3β), β-catenin, cyclin D1 and peroxisome proliferators-activated receptor γ (PPARγ) were detected in WAT in the rats of each group.@*RESULTS@#After intervention, compared with the model group, the body mass and Lee's index were reduced in the rats of the EA group and the agonist group (@*CONCLUSION@#Electroacupuncture remarkably improves the body mass, Lee's index and blood lipid metabolism and reduces WAT mass and adipocyte size in obesity model rats, which is probably related to up-regulating the protein expression of SIRT1 in WAT, activating Wnt/β-catenin pathway and inhibiting the expression of PPARγ of downstream lipogenic gene so as to affect lipid production.


Subject(s)
Animals , Male , Rats , Acupuncture Points , Electroacupuncture , Obesity/therapy , Rats, Wistar , Sirtuin 1/genetics , Triglycerides , beta Catenin/genetics
3.
Article | IMSEAR | ID: sea-209897

ABSTRACT

Microalgae produce a wide range of compounds including pigments, protein, starch, and lipids, which havebeen extensively used for various applications. In the current scenario, microalgal lipids are considered as apromising source for the production of next-generation bioenergy, and a huge productivity is needed to meet thedemand. Thus, to increase the production of biomass and lipid content, physical conditions play an importantrole and necessary to be optimized. The present study made such an attempt to optimize the physical factors forthe growth and production of lipid from Nannochloropsis gaditana. The study aimed to determine the effect ofphysical parameters such as pH, temperature, light intensity, and salinity. The results showed that the maximumgrowth rate of the N. gaditana was noticed in the salinity of 25 ppt, pH of 8, temperature of 25°C, and 2,000 luxof light intensity. The highest lipid content of the N. gaditana was noticed in the salinity of 30 ppt, pH of 8, andtemperature of 30°C with 2,000 lux light intensity. After optimization, above 40% of lipid yield was obtained,and it can be effectively utilized in bioenergy production.

4.
Electron. j. biotechnol ; 44: 60-68, Mar. 2020. tab, graf, ilus
Article in English | LILACS | ID: biblio-1087705

ABSTRACT

Background: Oleaginous yeasts can be grown on different carbon sources, including lignocellulosic hydrolysate containing a mixture of glucose and xylose. However, not all yeast strains can utilize both the sugars for lipogenesis. Therefore, in this study, efforts were made to isolate dual sugar-utilizing oleaginous yeasts from different sources. Results: A total of eleven isolates were obtained, which were screened for their ability to utilize various carbohydrates for lipogenesis. One promising yeast isolate Trichosporon mycotoxinivorans S2 was selected based on its capability to use a mixture of glucose and xylose and produce 44.86 ± 4.03% lipids, as well as its tolerance to fermentation inhibitors. In order to identify an inexpensive source of sugars, nondetoxified paddy straw hydrolysate (saccharified with cellulase), supplemented with 0.05% yeast extract, 0.18% peptone, and 0.04% MgSO4 was used for growth of the yeast, resulting in a yield of 5.17 g L−1 lipids with conversion productivity of 0.06 g L−1 h−1 . Optimization of the levels of yeast extract, peptone, and MgSO4 for maximizing lipid production using Box­Behnken design led to an increase in lipid yield by 41.59%. FAME analysis of single cell oil revealed oleic acid (30.84%), palmitic acid (18.28%), and stearic acid (17.64%) as the major fatty acids. Conclusion: The fatty acid profile illustrates the potential of T. mycotoxinivorans S2 to produce single cell oil as a feedstock for biodiesel. Therefore, the present study also indicated the potential of selected yeast to develop a zero-waste process for the complete valorization of paddy straw hydrolysate without detoxification


Subject(s)
Trichosporon/metabolism , Oryza , Xylose/isolation & purification , Trichosporon/chemistry , Oils/chemistry , Lipogenesis , Biofuels , Fermentation , Glucose/isolation & purification , Hydrolysis , Lignin/metabolism , Lipids/biosynthesis
5.
Ciênc. rural (Online) ; 49(7): e20180928, 2019. graf
Article in English | LILACS | ID: biblio-1045394

ABSTRACT

RESUMO: O desenvolvimento de equipamentos eficientes e específicos para a secagem de microalgas é essencial para a exploração comercial destes microrganismos que apresentam alta taxa de crescimento e grande potencial biotecnológico. Os custos de secagem da biomassa de microalgas ainda são elevados e precisam ser reduzidos para a produção de compostos com baixo valor agregado. Portanto, realizou-se o estudo da secagem da microalga Scenedesmus obliquus BR003 utilizando baixas temperaturas. S. obliquus BR003 é uma microalga robusta que apresenta alta produtividade de lipídeos. Em escala laboratorial, observou-se que a biomassa de S. obliquus BR003 foi rapidamente seca em baixas temperaturas entre 50 e 60 ºC. Um secador a gás foi utilizado para avaliar a secagem da biomassa de S. obliquus BR003 em escala piloto. A biomassa foi seca em menos de 24 h utilizando o secador a gás, entretanto, a elevada umidade da biomassa da microalga requereu uma maior renovação de ar na câmara do secador. A análise de fluidodinâmica computacional do secador a gás mostrou dois parâmetros importantes para se obter uma maior efetividade de transferência de calor e massa durante o processo de secagem da biomassa de microalga. Concluiu-se que um secador a gás adequado, para a biomassa de microalgas, deve possuir múltiplos pontos de injeção de ar, e um eficiente sistema de circulação e renovação de ar no interior da câmara de secagem.


ABSTRACT: Development of efficient and specific equipment to dry microalgae is essential for commercial use of these microorganisms that show high growth rates and biotechnological potential. Drying costs of microalgae biomass are still high and they should be reduced for the production of compounds with low added value. Therefore, we evaluated the drying process of the microalga Scenedesmus obliquus BR003 using low temperatures. S. obliquus BR003 is a robust microalga that shows high lipid productivity. At laboratory scale, it was observed that the biomass of S. obliquus BR003 was rapidly dried at low temperatures between 50 and 60 ° C. A gas dryer was used to evaluate the drying of the biomass of S. obliquus BR003 on a pilot-scale. The biomass was dried in less than 24 h using the gas dryer; however, the high moisture of the microalga biomass required a higher air renovation in the drying chamber. Computational fluid dynamics analysis of the gas dryer showed two important parameters to achieve greater effectiveness of heat and mass transfer rates during the drying process of the microalga biomass. It was concluded that a gas dryer suitable for the microalgae biomass should have multiple air injection points, and an efficient circulation and renovation system of air inside the drying chamber.

SELECTION OF CITATIONS
SEARCH DETAIL