Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Year range
1.
Article | IMSEAR | ID: sea-216070

ABSTRACT

The coexistence of humans and animals has existed for centuries. Over the past decade, animal research has played a critical role in drug development and discovery. More and more diverse animals, including transgenic animals, are used in basic research than in applied research. Transgenic animals are generated using molecular genetic techniques to add functional genes, alter gene products, delete genes, insert reporter genes into regulatory sequences, replace or repair genes, and make changes in gene expression. These genetically engineered animals are unique tools for studying a wide range of biomedical issues, allowing the exhibition of specific genetic alterations in various biological systems. Over the past two decades, transgenic animal models have played a critical role in improving our understanding of gene regulation and function in biological systems and human disease. This review article aims to highlight the role of transgenic animals in pharmacological, toxicological, and environmental research. The review accounts for various types of transgenic animals and their appropriateness in multiple types of studies.

2.
Article | IMSEAR | ID: sea-211963

ABSTRACT

Background: Acute kidney injury is a multiplex disease with severe morbidity and mortality. The trends of acute kidney injury vary according to the regions and the population under study. The aim of this study is to evaluate the trends of acute kidney injury and its outcome in a tertiary care hospital.Methods: The study was a prospective observational study conducted at a tertiary care hospital in a metropolitan city. A total of 102 patients of acute kidney injury were selected based on the Kidney Disease Improving Global Outcomes guidelines of acute kidney injury. The main trends of acute kidney injury presentation and its outcome were assessed.Results: Of 102 patients admitted, 42 had a sepsis related diagnosis (42.41%), 17 patients (17.16%) had cardiovascular disease related acute kidney injury and 12 patients (12.12%) had developed acute kidney injury due to drugs and poisons. According to RIFLE (risk of renal failure, injury to kidney, failure and loss of function and end-stage kidney disease) category, 43.96% of patients belonged to the risk category and 30.77% to the injury category. Of 34 patients in failure category, 23 recovered and 11 did not recover. Authors compared the trends of acute kidney injury in patients who recovered and who deteriorated. The mean serum creatinine values were 3.42 mg/dl in patients who didn’t recover from acute kidney injury and 2.05 mg/dl in patients who recovered. In patients of the recovered group, the mean urine output value is 783 ml/day; in deterioration group, 445 ml/day.Conclusions: Most common etiologies of acute kidney injury in this study include sepsis, drugs and poisons, cardiovascular diseases and diarrheal diseases in order of occurrence. High serum creatinine at admission and oliguria were the most common factors that contributed to deterioration in acute kidney injury.

3.
Journal of Zhejiang University. Medical sciences ; (6): 487-499, 2020.
Article in Chinese | WPRIM | ID: wpr-828474

ABSTRACT

Alzheimer's disease (AD) is an aging-related neurodegenerative disease and is associated with the accumulation of amyloid-β (Aβ) peptides in patient brains. AD can be classified into the familial type and sporadic type. () is the major risk gene for familial AD (fAD) because its mutations comprised over 80%of the total mutations causing fAD. PS1 is the catalytic subunit of the enzyme γ-secretase, which is responsible for the proteolytic cleavage of amyloid precursor protein (APP) to produce Aβ. Although novel fAD-causing mutations in PS1 are being reported increasingly, the molecular mechanisms underlying how these mutations induce fAD remain elusive. Since over 90%of the fAD-causing mutations in PS1 leads to a reduction of γ-secretase activity, the loss-of-function mutation hypothesis has been emerged, which suggests that the loss of PS1 functions may be the root cause of AD. Recently, increasing number of evidence supports this hypothesis. First, loss-of-function mutations increase the production of long-length Aβ by disturbing the cleavage sites of γ-secretase APP, thereby increasing the ratio of Aβ/Aβ; Second, loss-of-function mutations dysregulate endoplasmic reticulum calcium homeostasis in neurons; Third, loss-of-function mutations inhibit the autophagy activity of neurons, resulting in the abnormal accumulation of cleaved products from APP; Fourth, loss-of-function mutations alter the endocytosis and transcytosis processes in neurons, leading to neuratrophy; Fifth, loss-of-function mutations activate brain immune cells (astrocytes and microglia), which mount a strong neuroinflammation response; Last, loss-of-function mutations reduce the rates of glycolysis and the production of lactic acid, disrupting the balance of neuronal energy supply. In this article we summary the research progress on the loss-of-function hypothesis and pose several topics which would guide studies of this field in future.

4.
São Paulo; s.n; s.n; 2018. 105 p. ilus, tab, graf.
Thesis in English | LILACS | ID: biblio-909445

ABSTRACT

Chromatin remodeler proteins exert an important function in promoting dynamic modifications in the chromatin architecture, rendering the transcriptional machinery available to the condensed genomic DNA. Due to this central role in regulating gene transcription, deregulation of these molecular machines may lead to severe perturbations in the normal cell functions. Loss-of-function mutations in the CHD7 gene, a member of the chromodomain helicase DNA-binding (CHD) family, are the major cause of the CHARGE syndrome in humans. The disease is characterized by a variety of congenital anomalies, including malformations of the craniofacial structures, peripheral nervous system, ears, eyes and heart. In this context, several studies have already shown the importance of CHD7 for proper function of the neural stem cells (NSCs). Interestingly, we found that CHD7 mRNA levels are upregulated in gliomas, when compared to normal brain tissue, therefore, we hypothesized that CHD7 might have a role in the pathogenesis of these tumors. To investigate the possible oncogenic role of CHD7 in glioblastoma (GBM), we adopted gain- and loss-of-function approaches in adherent GBM cell lines. Using CRISPR_Cas9 genome editing, we found that CHD7 deletion suppresses anchorage-independent growth and reduces spheroid invasion in human LN-229 cells. Moreover, deletion of CHD7 delayed tumor growth and improved overall survival in an orthotopic xenograft glioma mouse model. Conversely, ectopic overexpression of CHD7 in LN-428 and A172 cells was found to increase cell motility and invasiveness in vitro and LN-428 tumor growth in vivo. RNAseq analysis showed that alterations of CHD7 expression levels promote changes in several molecular pathways and modulate critical genes associated with cell adhesion and locomotion. However, the mechanisms underlying the effects of CHD7 overexpression in glioma tissue are still not understood. Here, we also generated recombinant plasmid with functional CHD7 promoter activity reported by luciferase assay. This powerful tool should enable future studies to determine the direct targeting relationship between different signal transduction pathways and CHD7 geneexpression. In summary, our findings indicate that GBM cells expressing a high level of CHD7 may exist and contribute to tumor infiltration and recurrence. Further studies should warrant important clinical-translational implications of our findings for GBM treatment


As proteínas remodeladoras de cromatina exercem importante papel, promovendo modificações dinâmicas na arquitetura da cromatina e dando acesso à maquinaria transcricional ao DNA genômico condensado. Devido à esta função central na regulação da transcrição gênica, a desregulação dessas máquinas moleculares pode levar a perturbações graves na função normal das células. Assim, por exemplo, mutações do tipo perda de função no gene CHD7, um membro da família "chromodomain helicase DNA-binding" (CHD), são a principal causa da síndrome de CHARGE em humanos. A doença é caracterizada por uma variedade de anomalias congênitas, incluindo malformações das estruturas craniofaciais, sistema nervoso periférico, orelhas, olhos e coração. Neste contexto, vários estudos já mostraram a importância da proteína CHD7 para o funcionamento normal de células-tronco neurais (NSCs). Curiosamente, descobrimos que os níveis de mRNA de CHD7 estão mais fortemente expressos em gliomas, quando comparados ao tecido cerebral normal, portanto, nós hipotetizamos que CHD7 poderia ter um papel na patogênese desses tumores. Para investigar o possível papel oncogênico de CHD7 em glioblastoma (GBM), utilizamos enfoques de ganho e perda de função em linhagens celulares aderentes de GBM. Utilizando a técnica de CRISPR_Cas9 para edição do genoma, demonstramos que a deleção do gene CHD7 suprime o crescimento independente de ancoragem e reduz a invasão de esferóides em células LN-229 humanas de GBM. Além disso, a deleção de CHD7 reduziu o crescimento do tumor e melhorou a sobrevida em modelo de injeção ortotópica xenográfica em camundongo. Por outro lado, verificou-se que a super-expressão ectópica de CHD7 nas células LN-428 e A172 aumenta não só a motilidade celular e a capacidade de invasão in vitro, mas, também, o crescimento do tumor de LN-428 in vivo. A análise de RNA-seq mostrou que o nocauteamento da sequência codificadora de CHD7 e sua super-expressão promovem alterações em diversas vias moleculares, modulando genes críticosassociados à adesão e locomoção celular. No entanto, os mecanismos subjacentes aos efeitos da super-expressão de CHD7 em tecidos de glioma ainda não são compreendidos. Neste trabalho, geramos um plasmídeo recombinante contendo um fragmento da região promotora de CHD7, o qual se mostrou funcional em ensaios de luciferase. Esta ferramenta permitirá que estudos futuros possam identificar a relação direta entre as diferentes vias de transdução de sinal e a expressão do gene CHD7. Em resumo, nossos achados indicam que células de GBM expressando um alto nível de CHD7 podem existir e contribuir para a infiltração e recorrência do tumor. Estudos posteriores deverão avaliar as possíveis implicações dos resultados apresentados neste trabalho para a translação clínica no tratamento de pacientes com GBM


Subject(s)
Glioblastoma/complications , Chromatin Assembly and Disassembly , Cell Movement/physiology , Neoplasm Invasiveness
5.
International Journal of Pediatrics ; (6): 172-175, 2013.
Article in Chinese | WPRIM | ID: wpr-432512

ABSTRACT

STAT1 plays a central role in multiple intracellular signal transduction pathways.STAT1 gene mutations have led to four types primary immunodeficiency disease,including.autosomal recessive (AR) complete STAT1 deficiency,AR partial STAT1 deficiency,autosomal dominant (AD) STAT1 deficiency,and AD gain of STAT1 activity.The first three diseases due principally to the impairment of IFN-γ-mediated and/or IFN-α/β-mediated immunity.Different from common primary immunodeficiency diseases,AD gain of STAT1 function probably due to an enhancement of IFN-a/b-mediated immunity.This article reviews the pathogenesis,clinical manifestations,diagnosis and treatments of inborn errors of human STAT1 immunity.

6.
Indian J Dermatol Venereol Leprol ; 2012 Sept-Oct; 78(5): 545-551
Article in English | IMSEAR | ID: sea-141167

ABSTRACT

Filaggrin is very important in the terminal differentiation of the skin and the formation of cornified envelope in the stratum corneum. Several mutations in the filaggrin gene have been identified in the last decade, mostly from the European countries. Loss of function mutations in the filaggrin gene results in reduced production of filaggrin, depending on the type and site of mutation. Such mutations in the filaggrin gene have been shown to be the most significant genetic risk factor for development of atopic dermatitis and undoubtedly has a role in the pathogenesis of ichthyosis vulgaris. Though there is theoretical possibility of association with hand eczema and allergic contact dermatitis; in clinical studies, the strength of these associations was not significantly strong. In this review, we have discussed the structure and function of filaggrin, basic genetics, type of mutations in filaggrin gene, and association of such mutations with different dermatoses.

7.
J Biosci ; 2009 Sep; 34(3): 373-376
Article in English | IMSEAR | ID: sea-161319
SELECTION OF CITATIONS
SEARCH DETAIL