Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Article | IMSEAR | ID: sea-217174

ABSTRACT

Aims: To perform the isolation and phenotypic characterization of bacteriophage with lytic activity against Pseudomonas aeruginosa. To demonstrate that this type of viral agent can be isolated from the environment and used for the biocontrol of resistant bacterial types, such as Pseudomonas aeruginosa. Study Design: This study was an experimental study. Place and Duration of Study: The study was conducted at, Bacteriology and Mycology Laboratory in the Veterinary Hospital at the School of Agricultural Sciences, Innovation and Business of the University of Passo Fundo (ESAN/UPF) and Center for Diagnosis and Research in Animal Health of the University of Passo Fundo (CDSA/UPF), between April 2022 and June 2022. Methodology: Samples of untreated water were inoculated with the host bacterium strain Pseudomonas aeruginosa ATCC 27853 in an enriched media After the incubation period in, a phage filtrate was obtained by centrifugation followed by filtration. We verified the presence of bacteriophages using spot test and we carried out its purification by the method of sterile toothpick plate transfer on bacterial overlay semi-solid agar. Amplification was performed using an SM buffer elution procedure to produce a stock of viral material. Through assays in Petri dishes with bacterial overlay, we performed titration and phenotypic characterization regarding the lysis spectrum and efficiency of phage infection in the host. Results: We managed to isolate a morphologically characterized lytic bacteriophage with approximately 1 mm of diameter, high clarity in the inhibition area, the presence of halo and well-demarcated edges. The bacteriophage, named as Pseudomonas aeruginosa Phage UPF_PaBP1, demonstrated the infection capacity of the target bacteria in all tested dilutions and a stock preparation with a titre of 6.5 x 10? PFU/ml was obtained for future use. Conclusion: The isolated phage showed strong lytic activity against the bacterial host, a finding that nourishes our expectations regarding the use of this phage as a biocontrol agent and phage therapy.

2.
Braz. j. biol ; 82: e240943, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1278469

ABSTRACT

The emergence of multi-drug resistant (MDR) bacterial strains, which are posing a global health threat has developed the interest of scientists to use bacteriophages instead of conventional antibiotics therapy. In light of an increased interest in the use of phage as a bacterial control agent, the study aimed to isolate and characterize lytic phages from sewage effluent. During the current study, bacteriophage AS1 was isolated from sewage effluent against E.coli S2. The lytic activity of phageAS1 was limited to E.coli S2 strain showing monovalent behavior. The calculated phage titer was 3.5×109 pfu/ml. PhageAS1 was stable at a wide range of pH and temperature. The maximum stability was recorded at 37ºC and pH 7.0, while showing its normal lytic activity at temperature 60ºC and from pH 5.0 to11.0 respectively. At temperature 70ºC, phage activity was somewhat reduced whereas, further increase in temperature and decrease or increase in pH completely inactivated the phage. From the current study, it was concluded that waste water is a best source for finding bacteriophages against multi-drug resistant bacterial strains and can be used as bacterial control agent.


O surgimento de cepas bacterianas multirresistentes (MDR), que representam uma ameaça global à saúde, desenvolveu o interesse dos cientistas em usar bacteriófagos em vez da terapia convencional com antibióticos. Diante do crescente interesse no uso de fago como agente de controle bacteriano, o estudo visou isolar e caracterizar fagos líticos de efluente de esgoto. Durante o estudo atual, o bacteriófago AS1 foi isolado de efluente de esgoto contra E. coli S2. A atividade lítica de phageAS1 foi limitada à cepa E. coli S2, apresentando comportamento monovalente. O título de fago calculado foi de 3,5 x 109 ufp/ml. PhageAS1 foi estável em uma ampla faixa de pH e temperatura. A estabilidade máxima foi registrada a 37ºC e pH 7,0, enquanto mostrou atividade lítica normal em temperatura de 60ºC e pH 5,0 a 11,0, respectivamente. Na temperatura de 70ºC, a atividade do fago foi um pouco reduzida, enquanto o aumento adicional da temperatura e a diminuição ou aumento do pH inativaram completamente o fago. Com base no estudo atual, concluiu-se que a água residual é a melhor fonte para encontrar bacteriófagos contra cepas bacterianas multirresistentes e pode ser usada como agente de controle bacteriano.


Subject(s)
Sewage , Bacteriophages , Pakistan , Temperature , Coliphages
3.
Braz. j. biol ; 82: 1-7, 2022. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1468564

ABSTRACT

The emergence of multi-drug resistant (MDR) bacterial strains, which are posing a global health threat has developed the interest of scientists to use bacteriophages instead of conventional antibiotics therapy. In light of an increased interest in the use of phage as a bacterial control agent, the study aimed to isolate and characterize lytic phages from sewage effluent. During the current study, bacteriophage AS1 was isolated from sewage effluent against E.coli S2. The lytic activity of phageAS1 was limited to E.coli S2 strain showing monovalent behavior. The calculated phage titer was 3.5×109 pfu/ml. PhageAS1 was stable at a wide range of pH and temperature. The maximum stability was recorded at 37ºC and pH 7.0, while showing its normal lytic activity at temperature 60ºC and from pH 5.0 to 11.0 respectively. At temperature 70ºC, phage activity was somewhat reduced whereas, further increase in temperature and decrease or increase in pH completely inactivated the phage. From the current study, it was concluded that waste water is a best source for finding bacteriophages against multi-drug resistant bacterial strains and can be used as bacterial control agent.


O surgimento de cepas bacterianas multirresistentes (MDR), que representam uma ameaça global à saúde, desenvolveu o interesse dos cientistas em usar bacteriófagos em vez da terapia convencional com antibióticos. Diante do crescente interesse no uso de fago como agente de controle bacteriano, o estudo visou isolar e caracterizar fagos líticos de efluente de esgoto. Durante o estudo atual, o bacteriófago AS1 foi isolado de efluente de esgoto contra E. coli S2. A atividade lítica de phageAS1 foi limitada à cepa E. coli S2, apresentando comportamento monovalente. O título de fago calculado foi de 3,5 x 109 ufp/ml. PhageAS1 foi estável em uma ampla faixa de pH e temperatura. A estabilidade máxima foi registrada a 37ºC e pH 7,0, enquanto mostrou atividade lítica normal em temperatura de 60ºC e pH 5,0 a 11,0, respectivamente. Na temperatura de 70ºC, a atividade do fago foi um pouco reduzida, enquanto o aumento adicional da temperatura e a diminuição ou aumento do pH inativaram completamente o fago. Com base no estudo atual, concluiu-se que a água residual é a melhor fonte para encontrar bacteriófagos contra cepas bacterianas multirresistentes e pode ser usada como agente de controle bacteriano.


Subject(s)
Bacteriophages/isolation & purification , Coliphages/isolation & purification , Escherichia coli , Bacteriophage Typing/methods , Wastewater/analysis , Phage Therapy
4.
Braz. j. biol ; 822022.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1468751

ABSTRACT

Abstract The emergence of multi-drug resistant (MDR) bacterial strains, which are posing a global health threat has developed the interest of scientists to use bacteriophages instead of conventional antibiotics therapy. In light of an increased interest in the use of phage as a bacterial control agent, the study aimed to isolate and characterize lytic phages from sewage effluent. During the current study, bacteriophage AS1 was isolated from sewage effluent against E.coli S2. The lytic activity of phageAS1 was limited to E.coli S2 strain showing monovalent behavior. The calculated phage titer was 3.5×109 pfu/ml. PhageAS1 was stable at a wide range of pH and temperature. The maximum stability was recorded at 37ºC and pH 7.0, while showing its normal lytic activity at temperature 60ºC and from pH 5.0 to11.0 respectively. At temperature 70ºC, phage activity was somewhat reduced whereas, further increase in temperature and decrease or increase in pH completely inactivated the phage. From the current study, it was concluded that waste water is a best source for finding bacteriophages against multi-drug resistant bacterial strains and can be used as bacterial control agent.


Resumo O surgimento de cepas bacterianas multirresistentes (MDR), que representam uma ameaça global à saúde, desenvolveu o interesse dos cientistas em usar bacteriófagos em vez da terapia convencional com antibióticos. Diante do crescente interesse no uso de fago como agente de controle bacteriano, o estudo visou isolar e caracterizar fagos líticos de efluente de esgoto. Durante o estudo atual, o bacteriófago AS1 foi isolado de efluente de esgoto contra E. coli S2. A atividade lítica de phageAS1 foi limitada à cepa E. coli S2, apresentando comportamento monovalente. O título de fago calculado foi de 3,5 x 109 ufp/ml. PhageAS1 foi estável em uma ampla faixa de pH e temperatura. A estabilidade máxima foi registrada a 37ºC e pH 7,0, enquanto mostrou atividade lítica normal em temperatura de 60ºC e pH 5,0 a 11,0, respectivamente. Na temperatura de 70ºC, a atividade do fago foi um pouco reduzida, enquanto o aumento adicional da temperatura e a diminuição ou aumento do pH inativaram completamente o fago. Com base no estudo atual, concluiu-se que a água residual é a melhor fonte para encontrar bacteriófagos contra cepas bacterianas multirresistentes e pode ser usada como agente de controle bacteriano.

5.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469668

ABSTRACT

ABSTRACT This work described a novel halotolerant phage, JMT-1, with a spherical morphology. JMT-1, which was isolated from a hypersaline lake, could produce clear plaques on Chromohalobacter sp. LY7-3. The purified virions are spherical, have no visible tail, and are about 3050 nm in diameter. JMT-1 has a wide host range, and this study showed that the phage can infect at least five halophilic bacteria. The proteins of JMT-1 were analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis, and six proteins were detected. Results show that JMT-1 is a bacteriophage with a linear double-stranded DNA. Meanwhile, the genome is approximately 23 kb in length and is sensitive to the restriction endonucleases Bam I, EcoR I, Hind III and Kpa I. JMT-1 has a high titer, approaching 1.5 × 109 pfu/mL after dilution to 106 pfu/mL. The phage is also sensitive to chloroform but not to temperature, pH, and lowered salt concentration. JMT-1 is a spherical lytic halotolerant phage with a wide host range and has the tolerance to specific extreme environments. These data could provide references for studying phage resources in extreme environments and would also provide the useful methods for isolation and identification of other valuable phage in the salt lake environment.

6.
Braz. j. microbiol ; 49(supl.1): 262-268, 2018. graf
Article in English | LILACS | ID: biblio-974345

ABSTRACT

ABSTRACT This work described a novel halotolerant phage, JMT-1, with a spherical morphology. JMT-1, which was isolated from a hypersaline lake, could produce clear plaques on Chromohalobacter sp. LY7-3. The purified virions are spherical, have no visible tail, and are about 30-50 nm in diameter. JMT-1 has a wide host range, and this study showed that the phage can infect at least five halophilic bacteria. The proteins of JMT-1 were analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis, and six proteins were detected. Results show that JMT-1 is a bacteriophage with a linear double-stranded DNA. Meanwhile, the genome is approximately 23 kb in length and is sensitive to the restriction endonucleases Bam I, EcoR I, Hind III and Kpa I. JMT-1 has a high titer, approaching 1.5 × 109 pfu/mL after dilution to 10−6 pfu/mL. The phage is also sensitive to chloroform but not to temperature, pH, and lowered salt concentration. JMT-1 is a spherical lytic halotolerant phage with a wide host range and has the tolerance to specific extreme environments. These data could provide references for studying phage resources in extreme environments and would also provide the useful methods for isolation and identification of other valuable phage in the salt lake environment.


Subject(s)
Bacteriophages/isolation & purification , Virion/isolation & purification , Lakes/virology , Host Specificity , Bacteria/virology , Bacteriophages/classification , Bacteriophages/physiology , Bacteriophages/genetics , Virion/classification , Virion/physiology , Sodium Chloride/analysis , Lakes/analysis , China , Genome, Viral
SELECTION OF CITATIONS
SEARCH DETAIL