Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
China Pharmacy ; (12): 15-20, 2024.
Article in Chinese | WPRIM | ID: wpr-1005207

ABSTRACT

OBJECTIVE To investigate the mechanism of catalpol affecting the differentiation of helper T cell 17 (Th17) by interfering the expressions of pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). METHODS The naive CD4+ T cells were selected from the spleen of C57BL/6 mice, and were differentiated into Th17 cells by adding directional differentiation stimulants for 72 hours. At the same time, the cells were treated with 0 (directed control), 20, 40 and 80 μg/mL catalpol. The flow cytometry was used to detect the proportion of Th17 cell differentiation in cells; the colorimetric method was adopted to detect the levels of pyruvate and lactate in cell culture supernatant; mRNA expressions of retinoid-related orphan nuclear receptor gamma t (RORγt), PKM2 and LDHA were detected by qRT-PCR method; Western blot was used to detect the expression levels of PKM2, LDHA, signal transducer and activator of transcription 3 (STAT3), and phosphorylated STAT3 (p-STAT3) proteins in cells. RESULTS Compared with the directed control group, after 72 hours of treatment with 20, 40, 80 μg/mL catalpol, the differentiation ratio of Th17 cells were decreased by 6.74%, 8.41%, 9.24%, and the levels of pyruvate and lactate in the cell culture supernatant, the mRNA expressions of PKM2, LDHA and RORγt as well as the protein expressions of PKM2 and LDHA and the phosphorylation of STAT3 were significantly reduced (P<0.05). CONCLUSIONS Catalpol can reduce the glycolysis level by down-regulating the expressions of PKM2 and LDHA, thereby inhibiting the differentiation of Th17 cells.

2.
Indian J Pathol Microbiol ; 2023 Sept; 66(3): 478-487
Article | IMSEAR | ID: sea-223511

ABSTRACT

Objective: This article aims to study the effect of phosphate and tension homolog deleted on chromosome ten (PTEN) knockdown on colon cancer progression and macrophage polarization in the cancer environment. Materials and Methods and Results: The expression of PTEN in colon cancer tissues and colon cancer cells was significantly lower than in precancerous tissues or CCD-18Co cells, and the decrease was most evident in SW620 cells. The expressions of phosphate (p)-p38, c-Jun N-terminal kinase (JNK), activator protein 1 (AP-1), B-cell lymphoma-2 (Bcl-2) protein in colon cancer tissues and cells were significantly higher than in precancerous tissues or CCD-18Co cells (P-values < 0.05). Bcl-2-associated X (Bax) and Caspase-3 expressions in colon cancer tissues and cells were significantly lower than in precancerous tissues or CCD-18Co cells (P-values < 0.05). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was applied to measure cell viability. Transwell evaluated the cell migration and invasion ability. Si-PTEN improved the proliferation, migration, and invasion of SW620 cells (P-values < 0.05). The expression levels of arginase-1 (Arg-1), CD163, CD206 in colon cancer tissues were significantly higher than in precancerous tissues (P-values < 0.05). The cell cycle, the number of M1 and M2 double-positive cells were assessed by flow cytometry. Si-PTEN reduced the expression of tumor necrosis factor-alpha (TNF-?), interleukin-1beta (IL-1?), and inducible nitric oxide synthase (iNOS), which upregulated the expression of Arg-1, CD206, CD163, p-p38, JNK, and AP-1 (P-values < 0.05). Conclusion: Si-PTEN promoted colon cancer progression and induced the polarization of M2 tumor-associated macrophages in the colon cancer cell environment.

3.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 880-888, 2023.
Article in Chinese | WPRIM | ID: wpr-1015623

ABSTRACT

Tumor cells can use different strategies to suppress the immune system and disable them for killing tumor cells. Previous studies have shown that recombinant human peroxiredoxin-5 (hPRDX5) can activate the normal anti-tumor immune, so as to control and eliminate the tumor cells, but its exact mechanism of action needs to be studied in depth. The study aimed to investigate whether hPRDX5 exerts its anti-tumor activity by activating or reversing the polarization state of mouse macrophages RAW264. 7 cells. The results of CCK8 showed that different doses of hPRDX5 could significantly enhance the viability of macrophage compared with the control group (P < 0. 001); The results of Nitric oxide (NO) test showed that hPRDX5 significantly enhanced NO secretion levels in RAW264. 7 cells (P < 0. 001); ELISA experiments revealed that hPRDX5 promotes TNF-α (P<0. 01) and IL-6 (P<0. 001) secretion in RAW264. 7 cells; Flow cytometry revealed that hPRDX5 increased the expression of antigen differentiation cluster (CD) 80 (P < 0. 01) and inducible nitric oxide oxide synthase (iNOS) (P < 0. 001) in RAW264. 7 cells, and reduced the expression of CD206 (P < 0. 001) in RAW264. 7 cells induced by tumor conditional culture solution (TCS); Lactate dehydrogenase (LDH) experiments revealed that hPRDX5 can increase the killing activity of mouse macrophages on mouse pancreatic cancer Panc02 cells. hPRDX5 is able to activate mouse macrophage RAW264. 7 cells, promotes its M1-type polarization, reverses M2-type polarization, and exerts antitumor activity through the immune-enhancing effect.

4.
Chinese Pharmacological Bulletin ; (12): 707-715, 2023.
Article in Chinese | WPRIM | ID: wpr-1013927

ABSTRACT

Aim To investigate the protective effect of digoxin (Dig) on the bleomycin (BLM)-induced pulmonary fibrosis in mice and the underlying mechanism. Methods Pulmonary fibrosis model was established by intratracheal instillation of BLM (5 mg · kg

5.
Journal of Central South University(Medical Sciences) ; (12): 663-670, 2023.
Article in English | WPRIM | ID: wpr-982335

ABSTRACT

OBJECTIVES@#Endothelium-dependent vasodilation dysfunction is the pathological basis of diabetic macroangiopathy. The utilization and adaptation of endothelial cells to high glucose determine the functional status of endothelial cells. Glycolysis pathway is the major energy source for endothelial cells. Abnormal glycolysis plays an important role in endothelium-dependent vasodilation dysfunction induced by high glucose. Pyruvate kinase isozyme type M2 (PKM2) is one of key enzymes in glycolysis pathway, phosphorylation of PKM2 can reduce the activity of pyruvate kinase and affect the glycolysis process of glucose. TEPP-46 can stabilize PKM2 in its tetramer form, reducing its dimer formation and phosphorylation. Using TEPP-46 as a tool drug to inhibit PKM2 phosphorylation, this study aims to explore the impact and potential mechanism of phosphorylated PKM2 (p-PKM2) on endothelial dependent vasodilation function in high glucose, and to provide a theoretical basis for finding new intervention targets for diabetic macroangiopathy.@*METHODS@#The mice were divided into 3 groups: a wild-type (WT) group (a control group, C57BL/6 mice) and a db/db group (a diabetic group, db/db mice), which were treated with the sodium carboxymethyl cellulose solution (solvent) by gavage once a day, and a TEPP-46 group (a treatment group, db/db mice+TEPP-46), which was gavaged with TEPP-46 (30 mg/kg) and sodium carboxymethyl cellulose solution once a day. After 12 weeks of treatment, the levels of p-PKM2 and PKM2 protein in thoracic aortas, plasma nitric oxide (NO) level and endothelium-dependent vasodilation function of thoracic aortas were detected. High glucose (30 mmol/L) with or without TEPP-46 (10 μmol/L), mannitol incubating human umbilical vein endothelial cells (HUVECs) for 72 hours, respectively. The level of NO in supernatant, the content of NO in cells, and the levels of p-PKM2 and PKM2 protein were detected. Finally, the effect of TEPP-46 on endothelial nitric oxide synthase (eNOS) phosphorylation was detected at the cellular and animal levels.@*RESULTS@#Compared with the control group, the levels of p-PKM2 in thoracic aortas of the diabetic group increased (P<0.05). The responsiveness of thoracic aortas in the diabetic group to acetylcholine (ACh) was 47% lower than that in the control group (P<0.05), and that in TEPP-46 treatment group was 28% higher than that in the diabetic group (P<0.05), while there was no statistically significant difference in the responsiveness of thoracic aortas to sodium nitroprusside (SNP). Compared with the control group, the plasma NO level of mice decreased in the diabetic group, while compared with the diabetic group, the phosphorylation of PKM2 in thoracic aortas decreased and the plasma NO level increased in the TEPP-46 group (both P<0.05). High glucose instead of mannitol induced the increase of PKM2 phosphorylation in HUVECs and reduced the level of NO in supernatant (both P<0.05). HUVECs incubated with TEPP-46 and high glucose reversed the reduction of NO production and secretion induced by high glucose while inhibiting PKM2 phosphorylation (both P<0.05). At the cellular and animal levels, TEPP-46 reversed the decrease of eNOS (ser1177) phosphorylation induced by high glucose (both P<0.05).@*CONCLUSIONS@#p-PKM2 may be involved in the process of endothelium-dependent vasodilation dysfunction in Type 2 diabetes by inhibiting p-eNOS (ser1177)/NO pathway.


Subject(s)
Animals , Humans , Mice , Carboxymethylcellulose Sodium/pharmacology , Diabetes Mellitus, Type 2/metabolism , Endothelium, Vascular/metabolism , Glucose/metabolism , Human Umbilical Vein Endothelial Cells , Mice, Inbred C57BL , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Phosphorylation , Pyruvate Kinase/metabolism , Vasodilation
6.
Journal of Southern Medical University ; (12): 92-98, 2023.
Article in Chinese | WPRIM | ID: wpr-971499

ABSTRACT

OBJECTIVE@#To investigate the mechanism of shikonin-induced death of human hepatocellular carcinoma SMMC-7721 cells.@*METHODS@#Cultured SMMC-7721 cells and normal hepatocytes (L-02 cells) were treated with 4, 8, or 16 μmol/L shikonin, and the changes in cell viability was assessed using MTT assay. The levels of ATP and lactic acid in the cell cultures were detected using commercial kits. Co-immunoprecipitation and immunofluorescence staining were used to determine the relationship among pyruvate kinase M2 (PKM2), prolyl hydroxylase 3 (PHD3), and hypoxia-inducible factor-1α (HIF-1α). The expressions of PHD3, PKM2, HIF-1α, Bax, cleaved caspase-3, and Bcl-2 in SMMC-7721 cells were detected with Western blotting, and cell apoptosis was analyzed with annexin V-FITC/PI staining. The effects of RNA interference of PKM2 on PHD3 and HIF-1α expressions in SMMC-7721 cells were detected using Western blotting.@*RESULTS@#The IC50 of shikonin against SMMC-7721 and L-02 cells was 8.041 μmol/L and 31.75 μmol/L, respectively. Treatment with shikonin significantly inhibited the protein expressions of PKM2, HIF-1α and PHD3 and nuclear translocation of PKM2 and HIF-1α in SMMC-7721 cells. Coimmunoprecipitation and immunofluorescence staining confirmed that shikonin inhibited the formation of PKM2/PHD3/HIF-1α complex and significantly reduced the contents of lactic acid and ATP in SMMC-7721 cells (P < 0.05). The expressions of PHD3 and HIF-1α decreased significantly after PKM2 knockdown (P < 0.05). Shikonin treatment significantly increased the apoptosis rate, enhanced the expressions of Bax and cleaved caspase-3, and decreased Bcl-2 expression in SMMC-7721 cells (P < 0.05).@*CONCLUSIONS@#Shikonin induces apoptosis of SMMC-7721 cells possibly by inhibiting aerobic glycolysis through the PKM2/PHD3/HIF-1α signaling pathway to cause energy supply dysfunction in the cells.


Subject(s)
Humans , Prolyl Hydroxylases , Carcinoma, Hepatocellular , Caspase 3 , bcl-2-Associated X Protein , Liver Neoplasms , Signal Transduction , Apoptosis , Adenosine Triphosphate
7.
Chinese journal of integrative medicine ; (12): 44-51, 2023.
Article in English | WPRIM | ID: wpr-971324

ABSTRACT

OBJECTIVE@#To investigate and reveal the underlying mechanism of the effect of total saponins from Dioscoreae nipponica Makino (TSDN) on the arachidonic acid pathway in monosodium urate (MSU) crystal-induced M1-polarized macrophages.@*METHODS@#M1 polarization of RAW264.7 cells were induced by 1 µ g/mL lipopolysaccharide (LPS). The methylthiazolyldiphenyl-tetrazolium bromide method was then used to screen the concentration of TSDN. MSU (500 µ g/mL) was used to induce the gouty arthritis model. Afterwards, 10 µ g/L TSDN and 8 µ mol/L celecoxib, which was used as a positive control, were added to the above LPS and MSU-induced cells for 24 h. The mRNA and protein expressions of cyclooxygenase (COX) 2, 5-lipoxygenase (5-LOX), microsomal prostaglandin E synthase derived eicosanoids (mPGES)-1, leukotriene B (LTB)4, cytochrome P450 (CYP) 4A, and prostaglandin E2 (PGE2) were tested by real-time polymerase chain reaction and Western blotting, respectively. The enzyme-linked immunosorbent assay was used to test the contents of M1 markers, including inducible nitric oxid synthase (NOS) 2, CD80, and CD86.@*RESULTS@#TSDN inhibited the proliferation of M1 macrophages and decreased both the mRNA and protein expressions of COX2, 5-LOX, CYP4A, LTB4, and PGE2 (P<0.01) while increased the mRNA and protein expression of mPGES-1 (P<0.05 or P<0.01). TSDN could also significantly decrease the contents of NOS2, CD80, and CD86 (P<0.01).@*CONCLUSION@#TSDN has an anti-inflammation effect on gouty arthritis in an in vitro model by regulating arachidonic acid signaling pathway.


Subject(s)
Uric Acid/metabolism , Arachidonic Acid/metabolism , Dioscorea , Arthritis, Gouty , Lipopolysaccharides , Saponins/pharmacology , Macrophages , Signal Transduction , RNA, Messenger/metabolism
8.
Journal of Experimental Hematology ; (6): 170-178, 2023.
Article in Chinese | WPRIM | ID: wpr-971120

ABSTRACT

OBJECTIVE@#To investigate the expression of pyruvate kinase M2 (PKM2) in bone marrow mesenchymal stem cells (BMSCs) in myeloma bone disease (MBD) and its effect on osteogenic and adipogenic differentiation of BMSCs.@*METHODS@#BMSCs were isolated from bone marrow of five patients with multiple myeloma (MM) (MM group) and five with iron deficiency anemia (control group) for culture and identification. The expression of PKM2 protein were compared between the two groups. The differences between osteogenic and adipogenic differentiation of BMSCs were assessed by using alkaline phosphatase (ALP) and oil red O staining, and detecting marker genes of osteogenesis and adipogenesis. The effect of MM cell line (RPMI-8226) and BMSCs co-culture on the expression of PKM2 was explored. Functional analysis was performed to investigate the correlations of PKM2 expression of MM-derived BMSCs with osteogenic and adipogenic differentiation by employing PKM2 activator and inhibitor. The role of orlistat was explored in regulating PKM2 expression, osteogenic and adipogenic differentiation of MM-derived BMSCs.@*RESULTS@#Compared with control, MM-originated BMSCs possessed the ability of increased adipogenic and decreased osteogenic differentiation, and higher level of PKM2 protein. Co-culture of MM cells with BMSCs markedly up-regulated the expression of PKM2 of BMSCs. Up-regulation of PKM2 expression could promote adipogenic differentiation and inhibit osteogenic differentiation of MM-derived BMSCs, while down-regulation of PKM2 showed opposite effect. Orlistat significantly promoted osteogenic differentiation in MM-derived BMSCs via inhibiting the expression of PKM2.@*CONCLUSION@#The overexpression of PKM2 can induce the inhibition of osteogenic differentiation of BMSCs in MBD. Orlistat can promote the osteogenic differentiation of BMSCs via inhibiting the expression of PKM2, indicating a potential novel agent of anti-MBD therapy.


Subject(s)
Humans , Adipogenesis , Bone Diseases/metabolism , Bone Marrow Cells , Cell Differentiation , Cells, Cultured , Mesenchymal Stem Cells/physiology , Multiple Myeloma/metabolism , Orlistat/pharmacology , Osteogenesis/genetics
9.
Journal of Experimental Hematology ; (6): 64-70, 2023.
Article in Chinese | WPRIM | ID: wpr-971103

ABSTRACT

OBJECTIVE@#To study the prognostic value of LPCAT1 in acute myeloid leukemia (AML).@*METHODS@#TaqMan-based reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect relative expression of LPCAT1 in 214 newly diagnosed adult AML patients and 24 normal controls. Survival functions were estimated using the Kaplan-Meier method and were compared by the Log-rank test. A Cox proportional hazard regression model was used to identify prognostic factors.@*RESULTS@#The expression level of LPCAT1 in adult AML was 34.37%(1.83%-392.63%), which was significantly lower than 92.81%(2.60%-325.84%) of normal controls (P<0.001). The prognostic significance of LPCAT1 was evaluated in 171 non-acute promyelocytic leukemia patients with complete clinical information and prognostic data. Survival analysis showed that the expression level of LPCAT1 had no significant effect on the prognosis of the whole cohort. However, in AML patients with FAB subtype M2 (AML-M2), the 2-year relapse-free survival (RFS) rate of patients with low LPCAT1 expression was 35.4%(95%CI: 0.107-0.601), which was significantly lower than 79.2%(95%CI: 0.627-0.957) of patients with high LPCAT1 expression (P=0.012). Multivariate analysis showed that low expression of LPCAT1 was an independent risk factor for RFS of AML-M2 patients (HR=0.355, 95%CI: 0.126-0.966, P=0.049).@*CONCLUSION@#In adult AML patients LPCAT1 shows low expression. Low LPCAT1 expression is an independent risk factor for RFS in M2-AML patients.


Subject(s)
Humans , Adult , Prognosis , Leukemia, Myeloid, Acute/metabolism , Survival Analysis , Proportional Hazards Models , Risk Factors , 1-Acylglycerophosphocholine O-Acyltransferase
10.
Journal of China Pharmaceutical University ; (6): 95-106, 2023.
Article in Chinese | WPRIM | ID: wpr-965308

ABSTRACT

@#Tumor-associated macrophage promotes the progression of glioblastoma (GBM) by infiltrating into tumor tissue, yet its mechanism has not been fully elucidated.This paper aimed to investigate the mechanism of M2 macrophages in affecting the migratory capacity of GBM via secreting exosomes.Ultracentrifugation was used to extract exosomes; RNA sequencing was carried out to screen differentially expressed miRNAs; target prediction database was used to predict the possible target proteins of miRNA; Dual-luciferase reporter assay was performed to verify the interaction between miRNA and target genes; and the proliferation ability of tumor cells was detected by subcutaneous xenograft model in nude mice.Results showed that tumor-related macrophages were mainly M2 macrophages, and that exosomes secreted by M2 macrophages could promote the migration of glioma cells.Meanwhile, exosomes secreted by M2 macrophages transported miR-1260b and affected the migration of glioma cells through directly targeted AJAP1, suggesting that exosomes secreted by macrophages could affect the migration ability of GBM through transporting miR-1260b.

11.
Chinese journal of integrative medicine ; (12): 1007-1017, 2023.
Article in English | WPRIM | ID: wpr-1010281

ABSTRACT

OBJECTIVE@#To explore the mechanism of effects of total saponin fraction from Dioscorea Nipponica Makino (TSDN) on M1/M2 polarization of monocytes/macrophages and arachidonic acid (AA) pathway in rats with gouty arthritis (GA).@*METHODS@#Seventy-two Sprague Dawley rats were randomly divided into 4 groups (n=18 in each): normal, model, TSDN at 160 mg/kg, and celecoxib at 43.3 mg/kg. Monosodium urate crystal (MSU) was injected into the rats' ankle joints to induce an experimental GA model. Blood and tissue samples were collected on the 3rd, 5th, and 8th days of drug administration. Histopathological changes in the synovium of joints were observed via hematoxylin and eosin (HE) staining. The expression levels of arachidonic acid (AA) signaling pathway were assessed via real-time polymerase chain reaction (qPCR) and Western blot. Flow cytometry was used to determine the proportion of M1 and M2 macrophages in the peripheral blood. An enzyme-linked immunosorbent assay (ELISA) was used to detect interleukine (IL)-1 β, tumor necrosis factor-alpha (TNF-α), IL-4, IL-10, prostaglandin E2 (PGE2), and leukotriene B4 (LTB4).@*RESULTS@#HE staining showed that TSDN improved the synovial tissue. qPCR and Western blot showed that on the 3rd, 5th and 8th days of drug administration, TSDN reduced the mRNA and protein expressions of cyclooxygenase (COX)2, microsomal prostaglandin E synthase-1 derived eicosanoids (mPGES-1), 5-lipoxygenase (5-LOX), recombinant human mothers against decapentaplegic homolog 3 (Smad3), nucleotide-binding oligomerization domain-like receptor protein 3 (NALP3), and inducible nitric oxide synthase (iNOS) in rats' ankle synovial tissues (P<0.01). TSDN decreased COX1 mRNA and protein expression on 3rd and 5th day of drug administration and raised it on the 8th day (both P<0.01). It lowered CD68 protein expression on days 3 (P<0.01), as well as mRNA and protein expression on days 5 and 8 (P<0.01). On the 3rd, 5th, and 8th days of drug administration, TSDN elevated the mRNA and protein expression of Arg1 and CD163 (P<0.01). Flow cytometry results showed that TSDN decreased the percentage of M1 macrophages while increasing the percentage of M2 in peripheral blood (P<0.05 or P<0.01). ELISA results showed that on the 3rd, 5th, and 8th days of drug administration, TSDN decreased serum levels of IL-1 β, TNF-α, and LTB4 (P<0.01), as well as PGE2 levels on days 3rd and 8th days (P<0.05 or P<0.01); on day 8 of administration, TSDN increased IL-4 serum levels and enhanced IL-10 contents on days 5 and 8 (P<0.05 or P<0.01).@*CONCLUSION@#The anti-inflammatory effect of TSDN on rats with GA may be achieved by influencing M1/M2 polarization through AA signaling pathway.


Subject(s)
Rats , Humans , Animals , Arthritis, Gouty/drug therapy , Monocytes/pathology , Interleukin-10/metabolism , Arachidonic Acid/pharmacology , Dioscorea/chemistry , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism , Saponins/therapeutic use , Interleukin-4/metabolism , Leukotriene B4/pharmacology , Rats, Sprague-Dawley , Macrophages , Signal Transduction , RNA, Messenger/metabolism
12.
Chinese Journal of Microbiology and Immunology ; (12): 76-83, 2023.
Article in Chinese | WPRIM | ID: wpr-995259

ABSTRACT

Mononuclear macrophages are versatile cells that can have different responses to various microenvironmental signals. Under different stimuli of circumstances, macrophages can be fully polarized into classically activated macrophages (M1) and alternatively activated macrophages (M2), which are the extremes of a continuum of functional states. Nuclear factor-κB, cyclooxygenase 2, anoxia status, proto-oncogene MYC, Toll-like receptor signaling pathway, Notch signaling pathway and cytokines are all closely involved in the transition of tumor-associated macrophages from M1 to M2 phenotype. Macrophages that infiltrate tumor tissues are driven by tumor-derived cytokines to acquire a polarized M2 phenotype. These functionally polarized cells play a key role in the subversion of adaptive immunity and in inflammatory circuits that promote tumor development and progression. Exosomes derived from tumors have the characteristics of tumor cells and could participate in multiple processes of tumorigenesis and development. This review focused on exosomes derived from various cancer cells and discussed the role of the payloads of tumor-derived exosomes in modulating macrophage polarization in the tumor immune microenvironment and the intracellular signal mechanisms involved.

13.
Chinese Journal of Postgraduates of Medicine ; (36): 180-184, 2023.
Article in Chinese | WPRIM | ID: wpr-990988

ABSTRACT

Objective:To explore the expression of serum connective tissue growth factor (CTGF), glyoxalase Ⅰ (GLO-I) and pyruvate kinase M2 (PKM2) in endometrial cancer and their relationship with clinicopathological characteristics.Methods:A total of 96 endometrial cancer patients in Yuechi County People's Hospital from February 2015 to February 2017 were selected as the research group, 48 patients with endometrial hyperplasia during the same period were selected as the benign control group, and 48 patients with healthy physical examination during the same period were selected as the healthy control group. The serum levels of CTGF, GLO-Ⅰ, and PKM2 in the three groups were analyzed. The correlation between serum levels of CTGF, GLO-Ⅰ and PKM2 in the research group was analyzed, and the relationship between each serum index and clinicopathological characteristics was analyzed.Results:The levels of serum CTGF, GLO-Ⅰ and PKM2 in the research group were higher than those in the benign control group and healthy control group: (184.31 ± 37.14) μg/L vs. (110.45 ± 20.59), (17.28 ± 0.42) μg/L; (95.17 ± 16.56) pmol/L vs. (56.29 ± 10.14), (9.08 ± 0.66) pmol/L; (20.25 ± 6.13) μg/L vs. (13.11 ± 4.58), (9.05 ± 2.74) μg/L; and the levels of serum CTGF, GLO-Ⅰ and PKM2 in the benign control group were higher than those in the healthy control group, there were statistical differences ( P<0.05). The results of Pearson correlation analysis showed that the level of CTGF had positive correlation with GLO-Ⅰ and PKM2 ( r = 0.713, 0.741, P<0.05), and the level of GLO-Ⅰ had positive correlation with PKM2 ( r = 0.823, P<0.05). The results of Spearman correlation analysis showed that the levels of CTGF, GLO-Ⅰ, PKM2 had positive correlation with FIGO stage ( r = 0.609, 0.704, 0.721; P<0.05), myometrial invasion depth ( r = 0.753, 0.695, 0.719; P<0.05), lymph node metastasis ( r = 0.776, 0.744, 0.640; P<0.05); had negative correlation with the degree of differentiation ( r = - 0.711, - 0.720, - 0.668; P<0.05). Conclusions:Serum CTGF, GLO-I, PKM2 expression levels are abnormally elevated in patients with endometrial cancer, which are significantly related to multiple clinicopathological characteristics.

14.
Int. j. cardiovasc. sci. (Impr.) ; 35(3): 354-363, May-June 2022. tab, graf
Article in English | LILACS | ID: biblio-1375637

ABSTRACT

Abstract Background: Different immune mechanisms of myocardial damage involved in the pathophysiology of Chagas disease coexist with high titers of autoantibodies induced by T. cruzi . There are few studies in the literature about the adaptive role of anti-β1 and anti-M2 antibodies in chronic Chagas cardiomyopathy (CCC). Objectives: To evaluate the association between anti-β1 and anti-M2 antibodies with heart rate variability (HRV) parameters on 24h Holter monitoring and the rate-pressure product (RPP) on cardiopulmonary exercise testing (CPET). Methods: Anti-β1 and anti-M2 antibody titers were measured by enzyme-linked immunosorbent assay (ELISA) in 64 patients affected by CCC. Analysis of HRV was performed through the time-domain indices NNs, mean NN, SDNN, SDANN, SDNN index, NNNs, RMSSD, and pNN50. Spearman's correlation coefficient was used to assess the association between antibody titers and numerical variables. The Mann-Whitney test was used for comparison between two groups. Multiple linear regression was used to identify independent variables capable of explaining anti-β1 and anti-M2 antibody titers at the 5% significance level. Results: On 24h Holter, during the period of greatest parasympathetic activation (2:00-6:00 a.m.), an inverse association was found between anti-β1 titers and SDNN (rs=-0.13, p =0.041, n=43), as well as a direct association between anti-M2 titers and SDANN ( r s=0.317, p =0.039, n=43). Regarding CPET variables, anti-β1 titers were directly associated with RPP (rs=0.371, p =0.005, n=56). The subgroup of patients with a normal chronotropic response showed higher anti-β1 titers than the subgroup with an impaired response (p=0.023). RPP was an independent explanatory variable for anti-β1 titers, although with a low coefficient of determination (R2=0.147). Conclusion: The findings of this study suggest that, in patients with CCC, anti-β1 and anti-M2 antibodies may affect HRV parameters. RPP was directly associated with higher anti-β1 titers.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Young Adult , Autonomic Nervous System/physiology , Chagas Cardiomyopathy/physiopathology , Receptors, Adrenergic, beta-1/physiology , Receptor, Muscarinic M2/physiology , Chronic Disease , Cross-Sectional Studies , Antibodies, Bispecific , Exercise Test
15.
Rev. bras. ginecol. obstet ; 44(3): 245-250, Mar. 2022. tab, graf
Article in English | LILACS | ID: biblio-1387877

ABSTRACT

Abstract Objective The aim of the present retrospective study was to investigate the effectiveness of single-dose gonadotropin releasing hormone (GnRH) antagonist administration, the day after human chorionic gonadotropin (hCG) triggering for final oocyte maturation, on the prevention of premature luteinization in patients with diminished ovarian reserve in in-vitro fertilization (IVF) cycles. The secondary objective of the study was to search the effect of this protocol on pregnancy outcomes. Methods This is a retrospective study including 267 infertile patients who have single antral follicle seen with ultrasonography on the 2nd or 3rd day of the menstrual cycle before starting IVF treatment. We randomized patients into two groups. The case group comprised patients who had single-dose GnRH antagonist injection the day after hCG triggering formed, and the patients who had the standard treatment regime formed the control group. In both groups, the oocytes were collected 36 hours after hCG injection. Results The premature ovulation rate was significantly low in the case group compared with the control group (6.86 versus 20.6% per scheduled cycle) (p=0.022). Also, the oocyte retrieval rate (93.14 versus 67.87% per scheduled cycle) (p=0.013), the oocyte maturity rate (79.42 versus 47.87%) (p=0.041), the fertilization rate (65.68 versus 34.54%) (p=0.018), and the embryo transfer rate per scheduled cycle (44.11 versus 18.78%) (p=0.003) were higher in the GnRH antagonist group than in the control group. Conclusion The administration of GnRH antagonist the day after hCG trigger in IVF treatments of patients with diminished ovarian reserve enabled a significant decrease in the rate of premature ovulation but had no effect on live birth rate.


Resumo Objetivo O objetivo do presente estudo retrospectivo foi investigar a eficácia da administração do antagonista do hormônio liberador da gonadotrofina (GnRH) em dose única no dia seguinte ao desencadeamento da gonadotrofina coriônica humana (hCG) para a maturação final do oócito, na prevenção da luteinização prematura em pacientes com diminuição do ovário reserva em ciclos de fertilização in vitro (FIV). O objetivo secundário do estudo foi pesquisar o efeito deste protocolo nos resultados da gravidez. Métodos Trata-se de um estudo retrospectivo incluindo 267 pacientes inférteis que apresentam um único folículo antral visto por ultrassonografia no 2° ou 3° dia do ciclo menstrual antes de iniciar o tratamento de FIV. Nós randomizamos os pacientes em dois grupos. Os pacientes que receberam injeção de antagonista de GnRH em dose única no dia seguinte ao desencadeamento do hCG formaram o grupo caso, e os pacientes que receberam o regime de tratamento padrão formaram o grupo controle. Em ambos os grupos, os oócitos foram coletados 36 horas após a injeção de hCG. Resultados A taxa de ovulação prematura foi significativamente baixa no grupo caso em comparação com o grupo controle (6,86 versus 20,6% por ciclo programado) (p=0,022). Além disso, a taxa de recuperação de oócitos (93,14 versus 67,87% por ciclo programado) (p=0,013), a taxa de maturidade do oócito (79,42 versus 47,87%) (p=0,041), a taxa de fertilização (65,68 versus 34,54%) (p=0,018) e a taxa de transferência de embriões por ciclo programado (44,11 versus 18,78%) (p=0,003) foram maiores no grupo antagonista de GnRH do que no grupo controle. Conclusão A administração de antagonista de GnRH, no dia seguinte ao desencadeamento de hCG em tratamentos de FIV de pacientes com reserva ovariana diminuída permitiu uma redução significativa na taxa de ovulação precoce,mas não teve efeito na taxa de nascidos vivos.


Subject(s)
Humans , Female , Pregnancy , Oocytes , Receptors, LHRH , Pregnancy Rate
16.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 1504-1510, 2022.
Article in Chinese | WPRIM | ID: wpr-1015816

ABSTRACT

Thrombospondin 4 (THBS4), a member of the THBS family, is a protein secreted by the extracellular matrix and is involved in regulating various physiological processes, such as cell proliferation, adhesion and angiogenesis. Recent studies have shown that the inflammation stimulates THBS4 production and induces the adhesion and accumulation of macrophages. Our previous study confirmed that THBS4 acts as an oncogene in hepatocellular carcinoma (HCC), the effect of THBS4 on the immune microenvironment of HCC remains unclear. This study aims to analyze the role of THBS4 in promoting the metastasis of HCC cells by inducing M2-type polarization of tumor-associated macrophages. We simulate the tumor microenvironment through HCC conditioned medium (HCM) and found that the expression of THBS4 in macrophages increased in a time-dependent manner under the action of HCM (P<0.05); THBS4 knockdown promotes the expression of M1 macrophages markers IL-1β and CD86 (P<0.01), while the expression of M2-type markers IL-10 and CD206 were decreased (P<0.01). Transwell co-culture assay was used to further detect the effect of THBS4-induced M2-type macrophages on HCC metastasis. Results from co-culture of THBS4-downregulated M2 macrophages with HepG2 cells showed that THBS4-downregulated M2-TAMs significantly inhibited the invasion and migration ability of HepG2 cells (all P < 0.01). In conclusion, the tumor microenvironment promotes the expression of THBS4 in macrophages, and THBS4 may promote the invasion and metastasis of HCC cells by inducing M2-type polarization of macrophages. This study provides some new experimental basis for exploring the establishment of THBS4-induced HCC immune microenvironment.

17.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 1193-1201, 2022.
Article in Chinese | WPRIM | ID: wpr-1015792

ABSTRACT

Lysophosphatidylcholine (LPC) modulates the dynamic and integral process of macrophage polarization in immune responses, tissue inflammation and remodeling. Patatin-like phospholipase domain containing protein 7 (PNPLA7) was identified as an LPC-preferring lysophospholipase recently. However, the expression and role of PNPLA7 in macrophage polarization remained unknown. In the present study, PNPLA7 was found to be upregulated in the process of macrophage polarization toward an alternatively activated (M2) phenotype stimulated with interleukin 4 (IL-4) (P<0.05). We found that knockdown and overexpression of PNPLA1 decreased and increased the expression of M2 marker genes, including arginase 1 (Argl) and chitinase-like 3 (Ym\ ), respectively (P<0.05). Further studies showed that PNPLA7 regulated the expression of peroxisome proliferator activated receptor-γ (P P A R γ) at the mRNA and protein levels during M2 polarization (P < 0.05). However, the phosphorylation of signal transducer and activator of transcription 6 (STAT6) was not influenced by PNPLA7. These findings suggest that PNPLA7 favors macrophage anti-inflammatory M2 polarization through a PPAR

18.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 182-190, 2022.
Article in Chinese | WPRIM | ID: wpr-1015752

ABSTRACT

Macrophage polarization is a process of phenotypic regulation based on the surroundingstimulus environment, which is generally polarized into two phenotypes, namely classical activated M1macrophages and alternative activated M2 macrophages. In short, M1 macrophages are characterized aspro-inflammatory and anti-tumor; M2 macrophages are anti-inflammatory and pro-tumor. Macrophagepolarization is considered to be a key regulator of human physiology and pathology processes, and itseffectiveness depends on the coordinated expression of key factors, whose expression is finely regulated bymicroRNAs (miRNAs) at the post-transcriptional level. MicroRNAs are small non-coding RNAs that havethe ability to regulate gene expression and cellular network processes. More and more evidence shows thatmiRNAs play an important role in regulating macrophage polarization. Therefore, in this review, miRNAsregulating macrophage polarization to M1 / M2 type and have bidirectional regulation function are listed, and how they regulate macrophage polarization through transcription factors and their potential in thetreatment of inflammation and tumor.

19.
Chinese Pharmacological Bulletin ; (12): 196-201, 2022.
Article in Chinese | WPRIM | ID: wpr-1014194

ABSTRACT

Aim To evaluate the mechanism by which intermdin(IMD)inhibits lipopolysaccha ride(LPS)-induced polarization in RAW264.7 cells.Methods RAW264.7 cells were divided into control groups, LPS groups, LPS+IMD groups, LPS+IMD+Compound C groups.The mRNA expressions of tumor necrosis factor-α,(TNF-α,), CD86, inducible nitric oxide synthase(iNOS), Arginase-1(Arg-1)and CD206 were detected by Realtime-PCR.The protein expressions of p-AMPK, AMPK, TNF-α, intereukin-6(IL-6)and intereukin-10(IL-10)were detected by Western blot.The proportion of CD86+ M1 type cells was detected by Flow cytometry.In addition, the expression levels of supernatant cytokines, including IL-6 and TNF-α, were detected by ELISA.Results Compared with control and LPS groups, IMD treatment could up-regulate the expression level of p-AMPK and the ratio of p-AMPK/AMPK.LPS promoted M1 polarization, since the expressions of CD86, TNF-α and iNOS increased, while the expressions of CD206 and Arg-1 decreased by LPS induction.The proportion of M1 type cells increased and the secretion of TNF-α, IL-6 in the cell supernatant increased.And IMD treatment could inhibit the polarization of M1 induced by LPS.These effects were reversed by Compound C, an inhibitor of AMPK.Conclusion IMD can inhibit the M1-type polarization of LPS-induced macrophages by activating AMPK signaling pathway.

20.
Journal of Xi'an Jiaotong University(Medical Sciences) ; (6): 436-443, 2022.
Article in Chinese | WPRIM | ID: wpr-1011556

ABSTRACT

【Objective】 To study the role and mechanism of sinomenine in the macrophage polarization induced by gastric cancer cells. 【Methods】 Sinomenine was added to gastric cancer cells BGC-823 and MKN-45, cell viability was measured by CCK-8, cell proliferation was measured by colony formation experiment, Co-culture and Transwell cell migration experiments were used to evaluate the recruitment and polarization of macrophages by sinomenine, flow cytometry was used to evaluate the polarization of macrophages, and qRT-PCR and Western blot were used to detect the expression of gene RNA and protein levels. 【Results】 Sinomenine could inhibit the proliferation of gastric cancer cells and the recruitment of gastric cancer cells to macrophages, thus promoting macrophage M2 polarization. It simultaneously inhibited the expression of STAT6 as well as the expression and phosphorylation of C/EBPβ. When STAT6 is overexpressed, it could reduce these inhibitory effects of sinomenine on gastric cancer cells. Further research found that STAT6 mediated the secretion of IL-6 by gastric cancer cells, which was the cause of sinomenine-mediated macrophage recruitment and M2 polarization. 【Conclusion】 The natural drug sinomenine has a good tumor-suppressing ability against gastric cancer, directly inhibits the survival and migration of gastric cancer cells, and inhibits the expression of IL-6 and the M2 phenotype in the tumor microenvironment, reshapes the tumor environment, and reduces the risk of M2 type macrophages for gastric cancer tumors.

SELECTION OF CITATIONS
SEARCH DETAIL