Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Journal of Pharmaceutical Analysis ; (6): 365-375, 2020.
Article in Chinese | WPRIM | ID: wpr-865657

ABSTRACT

The aim of this study is a present of a simple solvothermal synthesis approach to preparation of Cu-based magnetic metal organic framework (MMOF) and subsequently its application as sorbent for ultrasound assisted magnetic solid phase extraction (UAMSPE) of ampicillin (AMP) from cow milk samples prior to high performance liquid chromatography-Ultraviolet (HPLC-UV) determination. Characteristics of pre-pared MMOF were fully investigated by different techniques which showed the exclusive properties of proposed sorbent in terms of proper functionality, desirable magnetic property and also high specific surface area. Different influential factors on extraction recovery including sorbent dosage, ultrasonic time, washing solvent volume and eluent solvent volume were assessed using central composite design (CCD) based response surface methodology (RSM) as an operative and powerful optimization tool. This is the first report for determination of AMP using MMOF. The proposed method addressed some drawbacks of other methods and sorbents for determination of AMP. The presented method decreases the extraction time (4 min) and also enhances adsorption capacity (250 mg/g). Moreover, the magnetic property of presented sorbent (15 emu/g) accelerates the extraction process which does not need filtration, centrifuge and precipitation procedures. Under the optimized conditions, the proposed method is applicable for linear range of 1.0-5000.0μg/L with detection limit of 0.29μg/L, satisfactory recoveries (≥95.0%) and acceptable repeatability (RSD less than 4.0%). The present study indicates highly promising perspectives of MMOF for highly effective analysis of AMP in complicated matrices.

2.
Biomedical and Environmental Sciences ; (12): 483-488, 2018.
Article in English | WPRIM | ID: wpr-690630

ABSTRACT

A magnetic metal organic framework (MMOF) was synthesized and used to separate Sr2+ in aqueous solution. The shape and structure of prepared Fe3O4@UiO-66-NH2 were characterized, and the absorbed concentration of strontium was determined through inductively coupled plasma mass spectrometry. The results indicated that Fe3O4 and UiO-66-NH2 combined through chemical bonding. The experimental adsorption results for separation of Sr2+ in aqueous solution indicated that the adsorption of Sr2+ to Fe3O4@UiO-66-NH2 increased drastically from pH 11 to pH 13. The adsorption isotherm model indicated that the adsorption of Sr2+ conformed to the Freundlich isotherm model (R2 = 0.9919). The MMOF thus inherited the superior qualities of magnetic composites and metal organic frameworks, and can easily be separated under an external magnetic field. This MMOF thus has potential applications as a magnetic adsorbent for low level radionuclide 90Sr.


Subject(s)
Adsorption , Ferrosoferric Oxide , Chemistry , Hydrogen-Ion Concentration , Metal-Organic Frameworks , Chemistry , Models, Theoretical , Nanoparticles , Chemistry , Strontium , Surface Properties , Water Pollutants, Radioactive , Water Purification , Methods
SELECTION OF CITATIONS
SEARCH DETAIL