Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Arq. ciências saúde UNIPAR ; 27(3): 1204-1222, 2023.
Article in Portuguese | LILACS | ID: biblio-1425455

ABSTRACT

Introdução: Arbovírus são causadores de doenças humanas, sendo que mudança ecológicas e aumento do contato humano-vetor aumenta a possibilidade de surtos. Objetivo: Detectar, identificar e caracterizar arbovírus presentes em mosquitos vetores capturados em regiões de mata próximas a Três Lagoas, MS. Metodologia: Mosquitos foram capturados utilizando armadilhas de luz em regiões de mata circunvizinha a Três Lagoas. Os mosquitos capturados foram classificados por gênero (chave morfológica) e agrupados em pools com até 20 espécimes, e utilizados através da reação de RT-PCR com posterior sequenciamento e análise filogenética. Resultados: Foram capturados 851 dos gêneros: Culex spp. (11 pools); Aedes spp. (13 pools); Haemagogus spp. (7 pools) e outros gêneros não identificados. Sequencias de vírus Dengue (DENV) foram amplificadas de 2/13 (15,38%) pools de Aedes spp. e uma sequência de vírus Mayaro (MAYV) 1/7 (7,7%) foi amplificada de pools de Haemagogus spp. As análises filogenéticas mostraram que as sequências de DENV agrupava-se no clado de DENV1 e DENV2. A sequência de MAYV agrupou-se junto a sequências de amostras de infecções humana por MAYV do grupo L. Conclusão: Estes resultados reforçam a circulação de DENV, que é causador de surtos anuais de doenças febris agudas no município, e detecção, por primeira vez na região, a circulação de MAYV, reforçando a necessidade de monitoramento viral constante nessa região.


Introduction: Arboviruses cause human diseases, and ecological changes and increased human-vector contact increase the possibility of outbreaks. Objective: To detect, identify and characterize arboviruses present in mosquito vectors captured in forest regions close to Tres Lagoas, MS. Methodology: Mosquitoes were captured using light traps in forest regions surrounding Tres Lagoas. The captured mosquitoes were classified by gender (morphological key) and grouped into pools with up to 20 specimens and used through the RT-PCR reaction with subsequent sequencing and phylogenetic analysis. Results: 851 of the genera were captured: Culex spp. (11 pools); Aedes spp. (13 pools); Haemagogus spp. (7 pools) and other unidentified genera. Dengue virus (DENV) sequences were amplified from 2/13 (15.38%) pools of Aedes spp. and a Mayaro virus (MAYV) sequence 1/7 (7.7%) were amplified from pools of Haemagogus spp. Phylogenetic analyzes showed that one of the DENV sequences clustered in the DENV1 and DENV2 clade. The MAYV sequence was grouped together with sequences from samples of human MAYV infections of the L group. Conclusion: These results reinforce the circulation of DENV, which causes annual outbreaks of acute febrile illnesses in the municipality, and detection, for the first time in the region, the circulation of MAYV, reinforcing the need for constant viral monitoring in this region.


Introducción: Los arbovirus causan enfermedades humanas, y los cambios ecológicos y el mayor contacto humano-vector aumentan la posibilidad de brotes. Objetivo: Detectar, identificar y caracterizar arbovirus presentes en mosquitos vectores capturados en regiones de selva próximas a Tres Lagoas, MS. Metodología: Los mosquitos fueron capturados utilizando trampas de luz en las regiones forestales que rodean Tres Lagoas. Los mosquitos capturados fueron clasificados por género (clave morfológica) y agrupados en pools de hasta 20 ejemplares, y utilizados mediante la reacción RT-PCR con posterior secuenciación y análisis filogenético. Resultados: Se capturaron 851 de los géneros: Culex spp. (11 pools); Aedes spp. (13 pools); Haemagogus spp. (7 pools) y otros géneros no identificados. Las secuencias del virus del dengue (DENV) se amplificaron a partir de 2/13 (15,38 %) grupos de Aedes spp. y una secuencia de virus Mayaro (MAYV) 1/7 (7,7%) de pools de Haemagogus spp. Los análisis filogenéticos mostraron que una de las secuencias de DENV se agrupaba en el clado DENV1 y DENV2. La secuencia de MAYV se agrupó con secuencias de muestras de infecciones humanas de MAYV del grupo L. Conclusión: Estos resultados refuerzan la circulación de DENV, causante de brotes anuales de enfermedades febriles agudas en el municipio, y la detección, por primera vez en la región, la circulación de MAYV, reforzando la necesidad de un monitoreo viral constante en esta región.


Subject(s)
Animals , Alphavirus , Aedes/classification , Culex/microbiology , Flavivirus , Mosquito Vectors/microbiology , RNA, Viral , Environmental Monitoring/instrumentation , Polymerase Chain Reaction , Epidemiology/instrumentation , Dengue/epidemiology , Dengue Virus , Culicidae/microbiology
3.
Journal of Bacteriology and Virology ; : 25-34, 2020.
Article in English | WPRIM | ID: wpr-816639

ABSTRACT

Mayaro virus (MAYV) is a mosquito-transmitted alphavirus that produces an acute, usually non-fatal, febrile illness including Mayaro fever. Like other alphaviruses, the MAYV E1 and E2 envelope glycoproteins are major viral surface antigens that play a key role in host recognition and infection. Here, we report expression and purification methods for recombinant MAYV E1 (rE1) and rE2 using a baculovirus system. Enzyme-linked immunosorbent assays (ELISA) revealed that rE1 and rE2 were antigenic and reacted with human anti-MAYV IgG and IgM. Cross-reactivity was also confirmed with human anti-Chikungunya virus (CHIKV) IgG and IgM. Furthermore, we developed an immunochromatographic strip test (IST) with rE2 to diagnose MAYV infection. Thus, purified rE2 may be valuable tool for rapidly diagnosing MAYV infection.


Subject(s)
Humans , Alphavirus , Antigens, Surface , Baculoviridae , Enzyme-Linked Immunosorbent Assay , Fever , Glycoproteins , Immunoglobulin G , Immunoglobulin M
4.
Asian Pacific Journal of Tropical Biomedicine ; (12): 95-100, 2020.
Article in Chinese | WPRIM | ID: wpr-823921

ABSTRACT

Mayaro virus is an emergent alphavirus that infects humans, leading to Mayaro fever. Approximately fifty percent of infected patients develop arthritis symptoms in the recovery phase, a phase that can last up to a year. The literature about Mayaro virus infection and its immune response is scarce, which may hamper the development of treatment strategies. We summarize changes in cytokines and chemokines in the acute and recovery phase in Mayaro virus infected patients, and relate this molecular characterization with the immune response. VEGF and IL-12/p70 show pronounced changes in patients in the acute phase, suggesting the development of cellular immunity and Th1 response. IL-6, IL-7, CXCL8/IL-8, IL-13, IL-17, and IFN-γ are elevated in patients with arthritis symptoms in the long-term recovery phase, which may be related to the continuous inflammatory process, a possible Th2 inhibiting and promoting Th17 process. Although few studies discuss the issue, with a small number of patients and different backgrounds, inflammatory and immune response and manifestations seem to be closely linked. This information may help to develop the appropriate treatment strategies in Mayaro virus infection. Therefore, we analyzed and summarized data available in literature.

5.
Rev. cuba. med. gen. integr ; 35(2): e831, abr.-jun. 2019.
Article in Spanish | LILACS, CUMED | ID: biblio-1093498

ABSTRACT

Introducción: En los últimos años, debido a los movimientos migratorios, se ha desarrollado una expansión de nuevas enfermedades, como chikungunya, zika, oropuche y mayaro. Caso clínico: Paciente que manifestaba síntomas de fiebre, cefalea y artralgias persistente. Después de un arduo estudio y eliminación de otras patologías se llega al diagnóstico de virus mayaro. El paciente residía en una zona nororiental del Perú. Se brindó tratamiento de soporte junto con hidratación, paracetamol 500 mg cada 8 horas y se indicó cita diaria para evaluación. El paciente evolucionó favorablemente a los pocos días. Conclusiones: La vigilancia, las pruebas y el control vectorial siguen siendo claves para prevenir la propagación de este tipo de virus. La posibilidad de que el virus mayaro se urbanice aún más. Se debe tener siempre en cuenta el diagnóstico diferencial de virus mayaro(AU)


Introduction: In recent years, due to migratory movements, an expansion of new diseases has developed, such as chikungunya, zika, oropuche and mayaro. Clinical case: Patient with the following symptoms: fever, headache and persistent arthralgia. After an arduous study and ruling out other possible diseases, we diagnose mayaro virus. The patient resided in a northeastern part of Peru. Supportive treatment was provided along with hydration; paracetamol 500 mg every 8 hours and daily appointment for evaluation was indicated. The patient evolved favorably within a few days. Conclusions: Surveillance, testing and vector control are still key to monitoring and preventing the spread of this type of virus. The possibility of mayaro virus becoming more urbanized is worthy of attention. The differential diagnosis of mayaro virus should always be considered(AU)


Subject(s)
Humans , Male , Female , Alphavirus Infections/diagnosis , Alphavirus Infections/prevention & control , Alphavirus Infections/epidemiology , Vector Control of Diseases , Peru
6.
Chinese Journal of Experimental and Clinical Virology ; (6): 632-636, 2019.
Article in Chinese | WPRIM | ID: wpr-805390

ABSTRACT

Objective@#To establish a method for the simultaneous identification of Zika, Chikungunya and Mayaro viruses.@*Methods@#The complete genome sequences of Zika, Chikungunya and Mayaro virus were retrieved from Global Shared Database for comparative analysis, estimate its conservative region and determine the target gene location, specific primers and probes were designed, then a triplex real-time RT-PCR assay was developed. The specificity, sensitivity and repeatability of the assay were assessed by viral nucleic acid of Zika virus, Chikungunya virus a, in vitro transcriptional RNA of Mayaro virus, normal human serum and related virus simulation sample.@*Results@#The result showed that the established method could detect Zika virus, Chikungunya virus, as well as simulated Mayaro virus samples, the limit of detection (LOD) of Zika and Chikungunya virus was 16.22 Copy/PCR and 12.02 Copy/PCR, respectively, the LOD for simulated Mayaro virus RNA was 2.82 Copy/PCR, no significant difference was detected between the triplex and monoplex assays. No cross reaction was found in the detection of dengue virus, Hantavirus, severe fever with thrombocytopenia syndrome (SFTS) virus, yellow fever virus and influenza virus, and 100 healthy adults blood samples, the specificity of the method was 100%. The repeatability result showed that the standard deviation of all three detections were blow 0.5 and the coefficient of variation was less than 2% by selecting viral nucleic acids or transcribed RNA with high, medium and low concentration gradients.@*Conclusions@#A triplex real-time RT-PCR assay for detection of Zika, Chikungunya and Mayaro virus has been established with an acceptable specificity, sensitivity and repeatability.

7.
Rev. Soc. Bras. Med. Trop ; 51(5): 584-590, Sept.-Oct. 2018. tab, graf
Article in English | LILACS | ID: biblio-957459

ABSTRACT

Abstract INTRODUCTION: The Mayaro virus (MAYV), which is an arbovirus closely related to the Chikungunya virus, causes a dengue-like acute illness that is endemic to Central and South America. We investigated the anti-MAYV activity of prostaglandin A1 (PGA1), a hormone which exhibits antiviral activity against both ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) viruses. Further, we examined the effects of inducting the stress protein HSP70 following PGA1 treatment. METHODS: Hep-2 cells infected with MAYV were treated with PGA1 (0.1-6μg/ml) 12h before infection and for different periods post-infection. Inhibition of viral replication inhibition was analyzed via viral titer determination, whereas the effect of PGA1 on viral morphogenesis was examined via transmission electron microscopy (TEM). Autoradiography (with 35S methionine labeling) and western blotting were used to assess the effect of PGA1 treatment on viral and cellular protein synthesis, and on HSP70 induction, respectively. RESULTS: PGA1 strongly reduced viral replication in Hep-2 cells, particularly when added during the early stages of viral replication. Although PGA1 treatment inhibited viral replication by 95% at 24 hours post-infection (hpi), viral structural protein synthesis was inhibited only by 15%. TEM analysis suggested that PGA1 inhibited replication before viral morphogenesis. Western blot and densitometry analyses showed that PGA1 treatment increased HSP70 protein levels, although this was not detectable via autoradiography. CONCLUSIONS: PGA1 inhibits MAYV replication in Hep-2 cells at early stages of viral replication, prior to production of viral structural proteins, possibly via HSP70 induction.


Subject(s)
Humans , Animals , Cattle , Prostaglandins A/pharmacology , Virus Replication/drug effects , Alphavirus/drug effects , HSP70 Heat-Shock Proteins/pharmacology , Epithelial Cells/virology , Antiviral Agents/pharmacology , Cell Line , Blotting, Western , Alphavirus/ultrastructure , Microscopy, Electron, Transmission , Electrophoresis, Polyacrylamide Gel , Epithelial Cells/ultrastructure
8.
Asian Pacific Journal of Tropical Medicine ; (12): 194-201, 2018.
Article in English | WPRIM | ID: wpr-825833

ABSTRACT

Objective:To evaluate the evolution of the pathogen Mayaro virus, causing Mayaro fever (a mosquito-borne disease) and to perform selective pressure analysis and homology modelling.Methods:Nine different datasets were built, one for each protein (from protein C to non-structural protein 4) and the last one for the complete genome. Selective pressure and homology modelling analyses were applied.Results:Two main clades (A and B) were pointed in the maximum likelihood tree. The clade A included five Brazilian sequences sampled from 1955 to 2015. The Brazilian sequence sampled in 2014 significantly clustered with the Haitian sequence sampled in 2015. The clade B included the remaining 27 sequences sampled in the Central and Southern America from 1957 to 2013. Selective pressure analysis revealed several sites under episodic diversifying selection in envelope surface glycoprotein E1, non-structural protein 1 and non- structural protein 3 with a posterior probability P≤0.01. Homology modelling showed different sites modified by selective pressure and some protein-protein interaction sites at high interaction propensity.Conclusion:Maximum likelihood analysis confirmed the Mayaro virus previous circulation in Haiti and the successful spread to the Caribbean and USA. Selective pressure analysis revealed a strong presence of negatively selected sites, suggesting a probable purging of deleterious polymorphisms in functional genes. Homology model showed the position 31, under selective pressure, located in the edge of the ADP-ribose binding site predicting to possess a high potential of protein-protein interaction and suggesting the possible chance for a protective vaccine, thus preventing Mayaro virus urbanization as with Chikungunya virus.

9.
Asian Pacific Journal of Tropical Medicine ; (12): 194-201, 2018.
Article in Chinese | WPRIM | ID: wpr-972469

ABSTRACT

Objective: To evaluate the evolution of the pathogen Mayaro virus, causing Mayaro fever (a mosquito-borne disease) and to perform selective pressure analysis and homology modelling. Methods: Nine different datasets were built, one for each protein (from protein C to non-structural protein 4) and the last one for the complete genome. Selective pressure and homology modelling analyses were applied. Results: Two main clades (A and B) were pointed in the maximum likelihood tree. The clade A included five Brazilian sequences sampled from 1955 to 2015. The Brazilian sequence sampled in 2014 significantly clustered with the Haitian sequence sampled in 2015. The clade B included the remaining 27 sequences sampled in the Central and Southern America from 1957 to 2013. Selective pressure analysis revealed several sites under episodic diversifying selection in envelope surface glycoprotein E1, non-structural protein 1 and non- structural protein 3 with a posterior probability P≤0.01. Homology modelling showed different sites modified by selective pressure and some protein-protein interaction sites at high interaction propensity. Conclusion: Maximum likelihood analysis confirmed the Mayaro virus previous circulation in Haiti and the successful spread to the Caribbean and USA. Selective pressure analysis revealed a strong presence of negatively selected sites, suggesting a probable purging of deleterious polymorphisms in functional genes. Homology model showed the position 31, under selective pressure, located in the edge of the ADP-ribose binding site predicting to possess a high potential of protein-protein interaction and suggesting the possible chance for a protective vaccine, thus preventing Mayaro virus urbanization as with Chikungunya virus.

10.
Braz. j. infect. dis ; 21(5): 540-544, Sept.-Oct. 2017. graf
Article in English | LILACS | ID: biblio-888906

ABSTRACT

Abstract Mayaro virus is an alphavirus from the Togaviridae family and is transmitted mainly by Hemagogus mosquitoes. This virus circulates in high-density tropical forests or rural areas of Central and South America causing a disease characterized by high-grade fever, maculopapular skin rash and marked arthralgia that, in some patients, can persist for long periods after infection and may be misinterpreted as chikungunya. Although only a few outbreaks involving this virus have been reported, in the last years the number of Mayaro virus infections has increased in the central and northern regions of Brazil. In this review, we describe the reported prevalence of this infection over the years and discuss the circumstances that can contribute to the establishment of an urban mayaro virus epidemic in Brazil and the problems encountered with the specific diagnosis, especially the antigenic cross-reactivity of this pathogen with other viruses of the same family.


Subject(s)
Humans , Animals , Alphavirus Infections/epidemiology , Alphavirus/classification , Urban Population , Brazil/epidemiology , Disease Outbreaks , Mosquito Vectors/virology
11.
Mem. Inst. Oswaldo Cruz ; 112(7): 510-513, July 2017. tab, graf
Article in English | LILACS | ID: biblio-841812

ABSTRACT

ABSTRACT We describe a sensitive method for simultaneous detection of Oropouche and Oropouche-like viruses carrying the Oropouche S segment, as well as the Mayaro virus, using a multiplexed one-step reverse transcription real-time polymerase chain reaction (RT-qPCR). A chimeric plasmid containing both Mayaro and Oropouche targets was designed and evaluated for the in vitro production of transcribed RNA, which could be easily used as a non-infectious external control. To track false-negative results due to PCR inhibition or equipment malfunction, the MS2 bacteriophage was also included in the multiplex assay as an internal positive control. The specificity of the multiplex assay was evaluated by Primer-Blast analysis against the entire GenBank database, and further against a panel of 17 RNA arboviruses. The results indicated an accurate and highly sensitive assay with amplification efficiency greater than 98% for both targets, and a limit of detection between two and 20 copies per reaction. We believe that the assay described here will provide a tool for Mayaro and Oropouche virus detection, especially in areas where differential diagnosis of Dengue, Zika and Chikungunya viruses should be performed.


Subject(s)
Humans , Orthobunyavirus/classification , Orthobunyavirus/genetics , Bunyaviridae Infections/diagnosis , Bunyaviridae Infections/virology , Alphavirus Infections/diagnosis , Alphavirus Infections/virology , Alphavirus/classification , Alphavirus/genetics , Reverse Transcriptase Polymerase Chain Reaction , Multiplex Polymerase Chain Reaction
12.
Rev. fac. cienc. méd. (Impr.) ; 14(1): 44-57, ene.-jun. 2017. ilus, graf, tab
Article in Spanish | LILACS | ID: biblio-859061

ABSTRACT

El dengue es una enfermedad prevalente con antigüedad en Honduras, la cual dejó de ser la arbovirosis exclusiva del país con la aparición del chikungunya y del zika, debido al limitado control logrado frente al vector. Se considera asimismo la posibilidad de la introducción de nuevas enfermedades como la fiebre del mayaro. Objetivo: describir la condición actual de las arbovirosis presentes en Honduras y un posible surgimiento de la fiebre mayaro en el país. Material y Métodos: Se realizó una revisión a partir de artículos en español e inglés en las bases de datos HINARI, PUBMED y ESCOB-HOST, con los descriptores dengue, mayaro, chinkungunya, virus, zika virus y epidemiología. Conclusión: Honduras se encuentra en una frágil situación referente al desarrollo de nuevas arbovirosis y presenta factores que favorecen el surgimiento de nuevas variedades de virus entre la salud pública hondureña...(AU)


Subject(s)
Humans , Alphavirus Infections , Arbovirus Infections/complications , Chikungunya virus , Public Health , Zika Virus
13.
Bol. venez. infectol ; 27(2): 79-84, jul.-dic. 2016.
Article in Spanish | LILACS | ID: biblio-2183

ABSTRACT

La fiebre Mayaro es una arbovirosis aguda que ocasiona un compromiso articular incapacitante. Se identificó por primera vez en Venezuela en un brote epidémico familiar de la región de Barlovento en el edo. Miranda en el año 2000. Los estudios clínicoepidemiológicos y la determinación etiológica identificaron al alfavirus Mayaro como responsable de la enfermedad. Se ha identificado en varias naciones del continente americano, resaltándose su aparición en casos esporádicos y brotes epidémicos, siendo su presentación selvática y rural. Los vectores responsables de la infección son los mosquitos del género Haemagogus. Mayaro es la cuarta arbovirosis de importancia médica descrita en Venezuela, la primera identificada fue la fiebre amarilla, seguida de la encefalitis equina venezolana, el dengue y la quinta el chikungunya, ya que recorrió la geografía nacional como epidemia en 2014. Mediante una revisión de la bibliografía médica disponible y la colaboración de estudiantes del curso regular de Medicina Tropical, siguiendo el programa Docencia en Medicina Tropical centrada en el estudiante se actualizaron los aspectos clínicos, epidemiológicos, etiopatogénicos, diagnósticos, terapéuticos y preventivos de esta enfermedad infecciosa viral. Como su aparición es esporádica y de predominio selvático, debe ser considerada cuando se atienden pacientes con síndrome febril agudo con compromiso articular, sean residentes o viajeros procedentes de áreas endémicas. Por considerar que se mantiene en un ciclo enzoótico en la naturaleza, su prevención debe ser claramente definida.


Mayaro fever is an acute mosquito-borne viral infectious disease that produces disabling joint involvement. It was identified for the first time in Venezuela the year 2000 in a family outbreak in the region of Barlovento of the Miranda State. Clinical and epidemiological studies permitted to identify the Mayaro Alphavirus as responsible for the disease. The virus has been identified in several countries of the American continent, the clinical presentation being as sporadic cases, clusters and outbreaks in the rural and forest areas. Being a mosquito-borne zoonosis, the vectors responsible for the infection are mosquitoes of the Haemagogus genus. Mayaro is the fourth arbovirus infectious disease of medical importance described in Venezuela, being the first identified yellow fever, followed by the Venezuelan equine encephalomyelitis, followed by dengue fever and the fifth is chikungunya that swept over the country as an epidemic in 2014. Through a review of the available medical literature and collaboration of students from the regular course of Tropical Medicine, as part of the Student-based Teaching Tropical Medicine Program, a revision of the epidemiology, etiology, diagnosis, treatment and prevention of this viral disease was updated. As it appears sporadically and occurs predominantly in the rural and forest areas, it should be considered when patients with acute febrile syndromes have also joint involvement, whether they are residents or travellers from endemic areas. Considering the enzootic cycle in nature, prevention must be clearly established.

14.
Braz. j. microbiol ; 47(supl.1): 38-50, Oct.-Dec. 2016. graf
Article in English | LILACS | ID: biblio-839330

ABSTRACT

ABSTRACT Arboviruses pose a serious threat to public health worldwide, overloading the healthcare system and causing economic losses. These viruses form a very diverse group, and in Brazil, arboviruses belonging to the families Flaviviridae and Togaviridae are predominant. Unfortunately, the number of arboviruses increases in proportion with factors such as deforestation, poor sanitation, climate changes, and introduction of new viruses like Chikungunya virus and Zika virus. In Brazil, dengue is endemic, along with the presence of other arboviruses. The situation is complicated by the scarcity of diagnostic infrastructure and the absence of approved vaccines for these diseases. Disease control, thus, relies solely on vector control. Therefore, enhanced clinical knowledge and improved general awareness about these arboviruses are indispensable to tackle diagnostic inadequacies.


Subject(s)
Humans , Animals , Virus Diseases/transmission , Virus Diseases/virology , Insect Vectors/virology , Culicidae/virology , Brazil/epidemiology , Virus Diseases/diagnosis , Virus Diseases/epidemiology , Alphavirus Infections/diagnosis , Alphavirus Infections/transmission , Alphavirus Infections/epidemiology , Alphavirus Infections/virology , Alphavirus/classification , Alphavirus/physiology , Dengue/transmission , Dengue/epidemiology , Dengue/virology , Dengue Virus/classification , Dengue Virus/physiology , Zika Virus Infection/diagnosis , Zika Virus Infection/transmission , Zika Virus Infection/epidemiology , Zika Virus Infection/virology
15.
Rev. Soc. Bras. Med. Trop ; 49(5): 648-652, Sept.-Oct. 2016. graf
Article in English | LILACS | ID: lil-798121

ABSTRACT

Abstract Arboviruses impose a serious threat to public health services. We report a case of a patient returning from a work trip to the Amazon basin with myalgia, arthralgia, fever, and headache. During this travel, the patient visited riverside communities. Both dengue and Chikungunya fevers were first suspected, tested for, and excluded. Mayaro fever was then confirmed by reverse transcription polymerase chain reaction followed by next-generation sequencing and phylogenetic reconstruction. The increased awareness of physicians and consequent detection of Mayaro virus in this case was only possible due a previous surveillance program with specific health personnel training about these neglected arboviruses.


Subject(s)
Humans , Male , Adult , HIV Infections , Alphavirus Infections/diagnosis , Alphavirus/genetics , Phylogeny , Alphavirus Infections/virology , Alphavirus/classification , Reverse Transcriptase Polymerase Chain Reaction , Diagnosis, Differential , Chikungunya Fever/diagnosis
16.
Mem. Inst. Oswaldo Cruz ; 111(1): 20-29, Jan. 2016. tab, graf
Article in English | LILACS | ID: lil-771080

ABSTRACT

This study aimed to verify the diversity of Culicidae species and their frequency of infection with flaviviruses and alphaviruses in Cuiabá, state of Mato Grosso, Brazil. Mosquitoes were captured with Nasci aspirators and hand net in 200 census tracts, identified alive at species level and pooled in one-20 (11,090 mosquitoes, 14 species). Female pools (n = 610) were subjected to multiplex seminested-reverse transcription-polymerase chain reaction (RT-PCR) for 11 flavivirus and five alphavirus. Positive pools were tested by single RT-PCR followed by nucleotide sequencing, by RT-PCR for E1 gene [Mayaro virus (MAYV)] and by inoculation in Vero cells (MAYV) or C6/36 cells (flaviviruses). One/171 Aedes aegypti was positive for dengue virus (DENV)-1, 12/403 Culex quinquefasciatus, and four/171Ae. aegypti for MAYV, which was isolated from two pools containing two nonengorged females of Ae. aegypti and two ofCx. quinquefasciatus. DENV-4 was detected in 58/171 pools of Ae. aegytpi, 105/403 Cx. quinquefasciatus, two/five Psorophora sp., two/11 Psorophora varipes/Psorophora albigenu, one/one Sabethes chloropterus, two/five Culex bidens/Culex interfor, and one/one Aedes sp. DENV-4 was isolated from two pools containing three and 16 nonengorged Cx. quinquefasciatus females. Phylogenetic analysis revealed MAYV belongs to genotype L, clustering with human samples of the virus previously identified in the city. Cuiabá has biodiversity and ecosystem favourable for vector proliferation, representing a risk for arbovirus outbreaks.


Subject(s)
Animals , Female , Humans , Alphavirus/isolation & purification , Culicidae/virology , Dengue Virus/isolation & purification , Insect Vectors/virology , Alphavirus/genetics , Brazil , Culicidae/classification , Dengue Virus/genetics , Genotype , Insect Vectors/classification , Multiplex Polymerase Chain Reaction , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Seasons
17.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469622

ABSTRACT

ABSTRACT Arboviruses pose a serious threat to public health worldwide, overloading the healthcare system and causing economic losses. These viruses form a very diverse group, and in Brazil, arboviruses belonging to the families Flaviviridae and Togaviridae are predominant. Unfortunately, the number of arboviruses increases in proportion with factors such as deforestation, poor sanitation, climate changes, and introduction of new viruses like Chikungunya virus and Zika virus. In Brazil, dengue is endemic, along with the presence of other arboviruses. The situation is complicated by the scarcity of diagnostic infrastructure and the absence of approved vaccines for these diseases. Disease control, thus, relies solely on vector control. Therefore, enhanced clinical knowledge and improved general awareness about these arboviruses are indispensable to tackle diagnostic inadequacies.

18.
Arq. Inst. Biol ; 83: e0202014, 2016. tab, mapas
Article in English | LILACS, VETINDEX | ID: biblio-1006845

ABSTRACT

The State of Pará comprises 26% of Brazilian Amazon region, where a large diversity of arboviruses has been described. This study sought to assess the prevalence and distribution of hemagglutination inhibition (HI) antibodies against antigens of four alphaviruses (Togaviridae: Alphavirus ) from the species: Eastern equine encephalitis (EEEV), Western equine encephalitis (WEEV), Mayaro virus (MAYV), and Mucambo virus (MUCV) in 753 serum samples of horses in Pará State, Brazil. All investigated arboviruses were detected and indicate that horses are susceptible to these alphaviruses, and show evidences of their active circulation in farm animals in the Brazilian Amazon.(AU)


O estado do Pará corresponde a 26% da Amazônia brasileira, onde uma grande diversidade de arbovírus foi descrita. Este estudo procurou avaliar a prevalência e a distribuição de anticorpos inibidores da hemaglutinação (IH) contra antígenos de quatro alfavirus (Togaviridae: Alphavirus ), das espécies: Vírus da encefalite equina do leste (EEEV), Vírus da encefalite equina do oeste (WEEV), Vírus mayaro (MAYV) e Vírus mucambo (MUCV), de 753 amostras de soro de equinos no estado do Pará, Brasil. Todos os arbovirus pesquisados foram detectados, indicando que os equinos são suscetíveis a esses Alphavirus e mostrando evidências de sua circulação ativa em animais de fazenda na Amazônia brasileira.(AU)


Subject(s)
Animals , Arboviruses , Hemagglutination Inhibition Tests , Encephalitis Virus, Eastern Equine , Encephalitis Virus, Western Equine , Horses , Zoonoses
19.
Rev. Soc. Bras. Med. Trop ; 48(supl.1): 20-26, 2015. graf
Article in English | LILACS | ID: lil-748367

ABSTRACT

The Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), located in Manaus, the capital of the State of Amazonas (Western Brazilian Amazon), is a pioneering institution in this region regarding the syndromic surveillance of acute febrile illness, including arboviral infections. Based on the data from patients at the FMT-HVD, we have detected recurrent outbreaks in Manaus by the four dengue serotypes in the past 15 years, with increasing severity of the disease. This endemicity has culminated in the simultaneous circulation of all four serotypes in 2011, the first time this has been reported in Brazil. Between 1996 and 2009, 42 cases of yellow fever (YF) were registered in the State of Amazonas, and 71.4% (30/42) were fatal. Since 2010, no cases have been reported. Because the introduction of the yellow fever virus into a large city such as Manaus, which is widely infested by Aedes mosquitoes, may pose a real risk of a yellow fever outbreak, efforts to maintain an appropriate immunization policy for the populace are critical. Manaus has also suffered silent outbreaks of Mayaro and Oropouche fevers lately, most of which were misdiagnosed as dengue fever. The tropical conditions of the State of Amazonas favor the existence of other arboviruses capable of producing human disease. Under this real threat, represented by at least 4 arboviruses producing human infections in Manaus and in other neighboring countries, it is important to develop an efficient public health surveillance strategy, including laboratories that are able to make proper diagnoses of arboviruses.


Subject(s)
Animals , Melanosis/genetics , Pigmentation/genetics , Receptor, Melanocortin, Type 1/genetics , Sciuridae/genetics , Amino Acid Sequence , Evolution, Molecular , Genetic Association Studies , Genetic Variation , Molecular Sequence Data , Pedigree , Sciuridae/classification , Sequence Deletion/genetics
20.
Mem. Inst. Oswaldo Cruz ; 110(1): 125-133, 03/02/2015. tab, graf
Article in English | LILACS | ID: lil-741616

ABSTRACT

The Pantanal hosts diverse wildlife species and therefore is a hotspot for arbovirus studies in South America. A serosurvey for Mayaro virus (MAYV), eastern (EEEV), western (WEEV) and Venezuelan (VEEV) equine encephalitis viruses was conducted with 237 sheep, 87 free-ranging caimans and 748 equids, including 37 collected from a ranch where a neurologic disorder outbreak had been recently reported. Sera were tested for specific viral antibodies using plaque-reduction neutralisation test. From a total of 748 equids, of which 264 were immunised with vaccine composed of EEEV and WEEV and 484 had no history of immunisation, 10 (1.3%) were seropositive for MAYV and two (0.3%) for VEEV using criteria of a ≥ 4-fold antibody titre difference. Among the 484 equids without history of immunisation, 48 (9.9%) were seropositive for EEEV and four (0.8%) for WEEV using the same criteria. Among the sheep, five were sero- positive for equine encephalitis alphaviruses, with one (0.4%) for EEEV, one (0.4%) for WEEV and three (1.3%) for VEEV. Regarding free-ranging caimans, one (1.1%) and three (3.4%), respectively, had low titres for neutralising antibodies to VEEV and undetermined alphaviruses. The neurological disorder outbreak could not be linked to the alphaviruses tested. Our findings represent strong evidence that MAYV and all equine encephalitis alphaviruses circulated in the Pantanal.


Subject(s)
Antioxidants/isolation & purification , Dietary Fiber/analysis , Flowers/chemistry , Hibiscus/chemistry , Industrial Waste/analysis , Polyphenols/isolation & purification , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/economics , Beverages/analysis , Beverages/economics , Dietary Carbohydrates/analysis , Dietary Carbohydrates/economics , Dietary Carbohydrates/isolation & purification , Dietary Fiber/economics , Food, Fortified/economics , Food-Processing Industry/economics , Industrial Waste/economics , Mexico , Plant Extracts/chemistry , Polyphenols/analysis , Polyphenols/chemistry , Polyphenols/economics , Polysaccharides/analysis , Polysaccharides/chemistry , Polysaccharides/economics , Polysaccharides/isolation & purification , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL