ABSTRACT
BACKGROUND: The present analysis focuses on phenotypic and genotypic characterizations of efflux-mediated erythromycin resistance in Streptococcus pneumoniae due to an increase in macrolide resistance in S. pneumoniae worldwide. METHODS: We investigated the prevalence of efflux-mediated erythromycin resistance and its relevant genetic elements from 186 specimens of S. pneumonia isolated from clinical and normal flora from Tehran, Iran. The presence of erythromycin resistance genes was tested by PCR with two sets of primers, specific for erm(B) and mef(A/E), and their genetic elements with tetM, xis, and int genes. Isolates were typed with the BOX PCR method and tested for resistance to six antibiotics. RESULTS: Antibiotic susceptibility tests revealed that 100% and 47% isolates were resistant to tetracycline and erythromycin, respectively. The erythromycin and clindamycin double-disc diffusion test for macrolide-lincosamide-streptograminB (MLSB) resistance phenotype showed 74 (84%) isolates with the constitutive MLSB phenotype and the remaining with the M phenotype. BOX PCR demonstrated the presence of 7 types in pneumococci with the M phenotype. Fourteen (16%) isolates with the M phenotype harbored mef(A/E), tetM, xis, and int genes. CONCLUSIONS: The present results suggest dissemination of polyclonal groups of S. pneumoniae with the M phenotype carrying resistance genes attributed to transposon 2009.
Subject(s)
Humans , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , DNA, Bacterial/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Erythromycin/pharmacology , Genotype , Microbial Sensitivity Tests , Phenotype , Pneumococcal Infections/microbiology , Polymerase Chain Reaction , Streptococcus pneumoniae/drug effects , Tetracycline/pharmacologyABSTRACT
The antimicrobial susceptibility of 64 strains of S. pneumoniae obtained from three hospitals in Porto Alegre, Brazil, isolated between 2004 and 2005, was determined, using the agar-dilution method. The prevalence of resistant (intermediate and full resistance) strains to trimethoprim/sulphamethoxazole, penicillin, tetracycline, erythromycin, chloramphenicol, and ceftriaxone were 68 percent, 28 percent, 18 percent, 15 percent, 3 percent, and 1 percent, respectively. All strains were susceptible to vancomycin. Among 18 penicillin-resistant strains, 7 were resistant to at least two other antimicrobial drugs. All erythromycin-resistant strains, except one, contained the erm(B) and/or mef(A/E) genes, with a predominance of the former. The resistance rate to penicillin and erythromycin in Porto Alegre remained stable. The combination of trimethoprim/ sulphamethoxazole should not be recommended to treat pneumococcal infections, because of the high rate of resistant strains.