Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Rev. peru. med. exp. salud publica ; 38(4): 587-594, oct.-dic. 2021. tab, graf
Article in Spanish | LILACS | ID: biblio-1365918

ABSTRACT

RESUMEN Objetivos. Determinar el efecto genotóxico de la tartrazina en linfocitos de sangre periférica de Mus musculus BALB/c. Materiales y métodos. Se realizó un estudio experimental, a través de cinco grupos, con cinco ratones en cada uno. Se les registró el peso durante 17 semanas y, en la semana 15 se les administró suero fisiológico (control negativo), dicromato de potasio 25 mg/kg de peso corporal (pc) (control positivo) y tartrazina a dosis de 0,75 mg/kg pc, 7,5 mg/kg pc y 75 mg/kg pc, durante siete días, a excepción del control positivo que fue en dosis única. Luego, cada 24 h se obtuvo una muestra de sangre periférica de la cola y se realizó el frotis, secado y coloración. Posteriormente, se realizó el conteo de 1000 linfocitos por muestra de cada ratón, en todos los tratamientos. Resultados. Los tres tratamientos con tartrazina no causaron diferencias significativas en el peso de ratones a la semana 15, pero sí produjeron diferencias significativas en la frecuencia de linfocitos micronucleados, siendo el tratamiento con tartrazina de 75 mg/kg pc el de mayor efecto genotóxico, induciendo un promedio de 1,63 ± 0,08 linfocitos micronucleados, comparado con el control positivo que generó un promedio de 1,42 ± 0,08 linfocitos micronucleados. Conclusiones. La tartrazina produjo un efecto genotóxico, incrementando el número de linfocitos micronucleados, a dosis de 0,75; 7,5 y 75 mg/kg pc y no afecta el peso corporal durante siete días de administración en M. musculus BALB/c.


ABSTRACT Objectives. To determine the genotoxic effect of tartrazine on peripheral blood lymphocytes of BALB/c Mus musculus. Materials and methods. An experimental study was carried out using five groups, with five mice in each group. Their weight was registered for 17 weeks, and at week 15 they were administered physiological saline solution (negative control), potassium dichromate at 25 mg/kg body weight (bw) (positive control) and tartrazine at doses of 0.75 mg/kg bw, 7.5 mg/kg bw and 75 mg/kg bw, for seven days, with the exception of the positive control which was a single dose. Then, every 24 hours, a peripheral blood sample was obtained from the tail, which was then smeared, dried and stained. Subsequently, 1000 lymphocytes were counted for each sample from each mouse, for all treatment groups. Results. The three tartrazine treatments did not cause significant differences in the weight of mice at week 15, but did produce significant differences in the frequency of micronucleated lymphocytes, with the 75 mg/kg bw tartrazine treatment having the greatest genotoxic effect, inducing an average of 1.63 ± 0.08 micronucleated lymphocytes, compared to the positive control which obtained an average of 1.42 ± 0.08 micronucleated lymphocytes. Conclusions. Tartrazine produced a genotoxic effect, increasing the number of micronucleated lymphocytes, at doses of 0.75; 7.5 and 75 mg/kg bw and did not affect body weight during seven days of administration to BALB/c M. musculus.


Subject(s)
Animals , Mice , Tartrazine , Lymphocytes , Genotoxicity , Mice , Micronucleus Tests , Toxicity Tests , Micronuclei, Chromosome-Defective , Recommended Dietary Allowances , Food Additives , Mice, Inbred Strains
2.
J Cancer Res Ther ; 2019 May; 15(3): 512-516
Article | IMSEAR | ID: sea-213649

ABSTRACT

Introduction: Ionizing radiations produce free radicals which are often responsible for DNA damage or cell death. Grape seed extract (GSE) is a natural compound having an antioxidant that protects DNA, lipids, and proteins from free radical damages. In this study, radioprotective effect of the GSE has been investigated in mouse bone marrow cells using micronucleus test. Materials and Methods: Four groups of mice were investigated in this study: Mice in Group 1 were subjected to injection of distilled water with no irradiation. Mice in Group 2 were exposed to 3 Gy gamma radiation after the injection of distillated water. Mice in Group 3 were injected with 200 mg/kg of the GSE without any irradiation. In another group, mice were exposed to three gray gamma irradiation after the injection of GSE. Animals were killed, and slides were prepared from the bone marrow cells 24 h after irradiation. The slides were stained with May Grunwald–Giemsa method and analyzed microscopically. The frequency of the micronucleated polychromatic erythrocytes (MnPCEs), micronucleated normochromatic erythrocyte (MnNCEs), and polychromatic erythrocyte/polychromatic erythrocyte + normochromatic erythrocyte (PCE/PCE + NCE) ratios was calculated. Results: Injection of GSE significantly decreased the frequency of MnPCEs (P < 0.0001) and MnNCEs (P < 0.05) and increased the ratio of PCE/PCE + NCE (P < 0.0001) compared to the irradiated control group. Discussion and Conclusions: GSE could reduce clastogenic and cytotoxic effects of gamma irradiation in mice bone marrow cells; therefore, it can be concluded that the GSE is a herbal compound with radioprotective effects against gamma irradiation. Free radical scavenging and the antioxidant effects of the GSE probably are responsible mechanisms for the GSE radioprotective effects

SELECTION OF CITATIONS
SEARCH DETAIL