Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.317
Filter
1.
Genet Genom Clinic ; 2(1): 8-15, 30 de abril de 2024.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1553141

ABSTRACT

Introducción: La linfohistiocitosis hemofagocítica familiar (FHL) es una enfermedad del sistema autoinmune que se presenta con un síndrome inflamatorio excesivo causado por linfocitos T activados e histiocitosis. Cursa con herencia autosómica recesiva ligada al cromosoma X. Aproximadamente el 90% de los niños diagnosticados son menores de 2 años y la incidencia es de aproximadamente 0.12 por 100.000. Se puede dividir en cinco subtipos según la variante genética causante. Las variantes patogénicas más involucradas son en los genes de la perforina 1 (PRF1) y homólogo D de la proteína UNC-13 (UNC13D). Caso clínico: Se presenta el caso de un preadolescente de 11 años, con antecedente de infecciones recurrentes, quien cursa con síndrome convulsivo asociado a fiebre, peso y talla bajas para la edad, hepatomegalia y discapacidad cognitiva. En el abordaje inicial se descartan enfermedades infecciosas, inmunológicas, hematológicas, metabólicas y oncológicas. El exoma clínico para inmunodeficiencias primarias muestra una variante patogénica p.A91V homocigota en el gen de la PRF1 de herencia autosómica recesiva, resultado relacionado con linfohistiocitosis hemofagocítica familiar tipo 2 (FHL2). Discusión y conclusión: El cambio conformacional del PRF1 alterado reduce la actividad citotóxica de la proteína y provoca la enfermedad. Los pacientes portadores de defectos en el gen PRF1 son vulnerables a infecciones, enfermedades autoinmunes y tumores malignos. Con un diagnóstico definido y preciso es posible orientar las acciones en salud, pautas de seguimiento, evaluación de riesgo de heredabilidad a través de un caso índice para así encontrar otros posibles portadores, realizar un asesoramiento genético completo, implementar e iniciar tratamientos dirigidos que aminoren la morbilidad y mortalidad asociada a esta patología. Actualmente se cuenta con varios estudios en diferentes fases de investigación sobre moléculas que pueden intervenir en la historia natural de la enfermedad. (provisto por Infomedic International)


Introduction: Familial hemophagocytic lymphohistiocytosis (FHL) is a disease of the autoimmune system that presents with an excessive inflammatory syndrome caused by activated T lymphocytes and histiocytosis. It occurs with autosomal recessive inheritance linked to the chromosome X. Approximately 90% of diagnosed children are under 2 years of age and the incidence is approximately 0.12 per 100,000. It can be divided into five subtypes depending on the causative genetic variant. The most involved pathogenic variants are in the perforin 1 (PRF1) and UNC-13 protein homolog D (UNC13D) genes. Clinical case: The case of an 11-year-old preadolescent is presented, with a history of recurrent infections, who presents with convulsive syndrome associated with fever, low weight and height for age, hepatomegaly and cognitive disability. In the initial approach, infectious, immunological, hematological, metabolic and oncological diseases are ruled out. The clinical exome for primary immunodeficiencies shows a homozygous pathogenic variant p.A91V in the PRF1 gene of autosomal recessive inheritance, a result related to familial hemophagocytic lymphohistiocytosis type 2 (FHL2). Discussion and conclusion: The altered PRF1 conformational change reduces the cytotoxic activity of the protein and causes disease. Patients carrying defects in the PRF1 gene are vulnerable to infections, autoimmune diseases and malignant tumors. With a defined and precise diagnosis, it is possible to guide health actions, follow-up guidelines, evaluation of heritability risk through an index case in order to find other possible carriers, carry out complete genetic counseling, implement and initiate targeted treatments that reduce the morbidity and mortality associated with this pathology. Currently, there are several studies in different phases of research on molecules that may intervene in the natural history of the disease. (provided by Infomedic International)

2.
Rev. argent. cir. plást ; 30(1): 60-71, 20240000. fig
Article in Spanish | LILACS, BINACIS | ID: biblio-1551435

ABSTRACT

Se revisan los nuevos conocimientos sobre la matriz extracelular (MEC), que han permitido descubrir su importante rol en la cicatrización de las heridas cutáneas. Se describen sus características morfofisiológicas y cómo interviene en la curación de las heridas cutáneas. Se presentan cuatro casos clínicos en los que se aplicó este enfoque terapéutico: los sustitutos de piel y la "cura húmeda"


We review the new knowledge about the extracellular ma-trix (ECM) that has allowed us to discover its important role in the healing of cutaneous wounds. The morpho-physiological characteristics of ECM and its role in the healing of cutaneous wounds are described. Four clinical cases are presented where this therapeutic approach was applied: the skin substitutes and the "moist wound healing".


Subject(s)
Humans , Male , Female , Wound Healing , Burns/therapy , Skin, Artificial , Regenerative Medicine , Extracellular Matrix
3.
Braz. J. Oncol ; 20: e-20230437, 20240101.
Article in English | LILACS | ID: biblio-1554109

ABSTRACT

Borderline ovarian tumors typically exhibit indolent behavior and boast a favorable prognosis; however, a subset of patients experiences disease recurrence and progression to low-grade ovarian carcinoma. The complex biology underlying these phenomena has been illuminated through molecular analyses. KRAS and BRAF mutations have emerged as recurrent ?ndings in borderline ovarian tumors. Speci?cally, KRAS mutations have been linked to a higher risk of recurrence and progression to low-grade ovarian carcinoma, while BRAF mutations seem to confer a protective e?ect, inducing a senescent state that mitigates the likelihood of progression. In this comprehensive review, we explore the biology and the molecular pro?le of borderline ovarian tumors, shedding light on recent discoveries that have enriched our comprehension. Additionally, we discuss the current state of borderline ovarian tumors management. Surgery remains the cornerstone of treatment. While cytotoxic therapies role is limited so far, molecular characterization emphasizes the imminent potential for personalized therapeutic approaches.


Os tumores borderline de ovário geralmente exibem comportamento indolente e apresentam prognóstico favorável; no entanto, um subconjunto de pacientes apresenta recorrência da doença e progressão para carcinoma de ovário de baixo grau. A biologia complexa subjacente a estes fenômenos foi iluminada através de análises moleculares. Mutações KRAS e BRAF surgiram como achados recorrentes em tumores borderline de ovário. Especificamente, as mutações KRAS têm sido associadas a um maior risco de recorrência e progressão para carcinoma de ovário de baixo grau, enquanto as mutações BRAF parecem conferir um efeito protetor, induzindo um estado senescente que mitiga a probabilidade de progressão. Nesta revisão abrangente, exploramos a biologia e o perfil molecular dos tumores borderline de ovário, lançando luz sobre descobertas recentes que enriqueceram nossa compreensão. Além disso, discutimos o estado atual do manejo de tumores borderline de ovário. A cirurgia continua sendo o pilar de tratamento. Embora o papel das terapias citotóxicas seja limitado até o momento, a caracterização molecular enfatiza o potencial iminente para abordagens terapêuticas personalizadas.


Subject(s)
Ovarian Neoplasms , Gynecologic Surgical Procedures , Urogenital Neoplasms , Varicocele
4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 264-275, 2024.
Article in Chinese | WPRIM | ID: wpr-999184

ABSTRACT

Fibrosis, a tumor-like lesion between benign tissue and malignant tumor, mostly occurs in the liver, kidney, heart, lung, bone marrow and other organs and tissues. It can affect almost every organ and eventually induce multiple organ failure and cancers, seriously endangering human life. It will be of great importance to prevent cancer if the disease can be opportunely blocked in the fibrotic stage. The pathogenesis of fibrosis is still not completely clear. It is of great clinical significance to study the occurrence, development, and mechanism of fibrosis as well as to screen new therapeutic targets. Enhancer of zeste homolog 2 (EZH2) is mainly located in the nucleus and involved in the formation of the polycomb repressive complex 2. EZH2 is a methyltransferase which makes the lysine on position 27 of histone H3 (H3K27me3) undergo trimethyl modification induces gene silencing through classical or nonclassical actions, so as to inhibit or activate transcription. EZH2 plays a critical role in cell growth, proliferation, differentiation, and apoptosis, which is regulated by different targets and signaling pathways. EZH2 regulates the transformation of myofibroblasts and participates in the fibrosis of multiple organs. Recent studies have shown that EZH2 plays a role in fibrosis-related pathophysiological processes such as epithelial-mesenchymal transition, oxidative stress, and inflammation. EZH2 as the target of fibrosis, EZH2 inhibitors, and EZH2-related traditional Chinese medicine (TCM) formula and active compounds have gradually become hot research directions. EZH2 may be a powerful target for organ fibrosis. Exploring the structure, function, and distribution of EZH2, the role of EZH2 in fibrosis, the EZH2 inhibitors, and TCM formulas and active components targeting EZH2 has great meanings. This paper reviews the research progress in EZH2 and fibrosis, providing new ideas for the diagnosis, treatment, and drug development of fibrosis.

5.
Chinese journal of integrative medicine ; (12): 62-74, 2024.
Article in English | WPRIM | ID: wpr-1010326

ABSTRACT

Elemene, derived from Curcuma wenyujin, one of the "8 famous genuine medicinal materials of Zhejiang province," exhibits remarkable antitumor activity. It has gained wide recognition in clinical practice for effectiveness on tumors. Dr. XIE Tian, introduced the innovative concept of "molecular compatibility theory" by combining Chinese medicine principles, specifically the "monarch, minister, assistant, and envoy" theory, with modern biomedical technology. This groundbreaking approach, along with a systematic analysis of Chinese medicine and modern biomedical knowledge, led to the development of elemene nanoliposome formulations. These novel formulations offer numerous advantages, including low toxicity, well-defined composition, synergistic effects on multiple targets, and excellent biocompatibility. Following the principles of the "molecular compatibility theory", further exploration of cancer treatment strategies and methods based on elemene was undertaken. This comprehensive review consolidates the current understanding of elemene's potential antitumor mechanisms, recent clinical investigations, advancements in drug delivery systems, and structural modifications. The ultimate goal of this review is to establish a solid theoretical foundation for researchers, empowering them to develop more effective antitumor drugs based on the principles of "molecular compatibility theory".


Subject(s)
Humans , Retrospective Studies , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Drugs, Chinese Herbal/therapeutic use , Sesquiterpenes/therapeutic use
6.
Chinese Journal of Lung Cancer ; (12): 943-949, 2024.
Article in Chinese | WPRIM | ID: wpr-1010102

ABSTRACT

So far, the monoclonal hypothesis of tumor occurrence and development cannot be justified. The genetic diversity selection hypothesis for the occurrence and development of lung cancer links Mendelian genetics with Darwin's theory of evolution, suggesting that the genetic diversity of tumor cell populations with polyclonal origins-monoclonal selection-subclonal expansion is the result of selection pressure. Normal cells acquire mutations in oncogenic driver genes and have a selective advantage over other cells, becoming tumor initiating cells; In the interaction with the tumor microenvironment (TME), the vast majority of initiating cells are recognized and killed by the human immune system. If immune escape occurs, the incidence of malignant tumors will greatly increase, and subclonal expansion, intratumour heterogeneity, etc. will occur. This article proposed the hypothesis of genetic diversity selection and analyzed its clinical significance.
.


Subject(s)
Humans , Lung Neoplasms/genetics , Clinical Relevance , Evolution, Molecular , Mutation , Tumor Microenvironment
7.
Chinese Journal of Lung Cancer ; (12): 910-918, 2024.
Article in Chinese | WPRIM | ID: wpr-1010099

ABSTRACT

BACKGROUND@#The thoracic small biopsy sampling procedure including transbronchial forceps lung biopsy (TBLB) and endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) can be accompanied by rapid on-site evaluation (ROSE) of sample material to provide immediate feedback for the proceduralist. The present study aims to investigate the supplemental effect of ROSE smear samples for lung cancer molecular test.@*METHODS@#In a retrospective study, 308 patients admitted to our hospital from August 2020 to December 2022 undergoing diagnostic TBLB and EBUS-TBNA with ROSE and subsequently diagnosed as non-small cell lung cancer (NSCLC) were analyzed. The matched formalin-fixed paraffin-embedding (FFPE) tissue section and ROSE smears for tumor cellularity were compared. DNA yields of smears were determined. Real-time polymerase chain reaction (PCR) and next-generation sequencing (NGS) were performed on adequate smear samples.@*RESULTS@#ROSE smear samples were enriched in tumor cells. Among 308 biopsy samples, 78 cases (25.3%) exhibited inadequate FFPE tissue sections, whereas 44 cases (14.3%) yielded adequate smear samples. Somatic mutations detected in the FFPE tissue section samples were also detected in the matching adequate smear sample.@*CONCLUSIONS@#ROSE smear samples of the thoracic small biopsies are beneficial supplemental materials for ancillary testing of lung cancer. Combined use of cytology smear samples with traditional FFPE section samples can enhance the detection rate of informative mutations in patients with advanced NSCLC. We recommend that the laboratory could further evaluate the ROSE cell smears of the patient when FFPE tissue sections are inadequate, and that adequate cell smears can be used as a supplemental source for the molecular testing of NSCLC.


Subject(s)
Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Rapid On-site Evaluation , Retrospective Studies , Molecular Diagnostic Techniques , Endoscopic Ultrasound-Guided Fine Needle Aspiration/methods
8.
Acta Pharmaceutica Sinica ; (12): 633-642, 2024.
Article in Chinese | WPRIM | ID: wpr-1016622

ABSTRACT

italic>Anoectochilus roxburghii liquid (spray, a hospital preparation of Wu Mengchao Hepatobiliary Hospital of Fujian Medical University) has shown a good clinical treatment effect during the COVID-19 pandemic, but its material basis and mechanism of action are still unclear. In this study, network pharmacology and molecular docking methods were used to predict the molecular mechanism of A. roxburghii liquid against COVID-19, and pharmacodynamic experiments in vitro were conducted to study the interaction between the current targets with clear preventive and therapeutic effects and the key components of A. roxburghii liquid. UPLC-MS and database were used to compare and analyze the active ingredients in the liquid, and 17 potential active ingredients with good drug-like properties were screened by in vivo pharmacokinetics process in SwissADME database. SwissTargetPrediction and GeneCards were searched to find 93 common targets. Cytoscape 3.8.2 software was used to construct the "component-target" network map, and the Metascape platform was used for gene function annotation and pathway enrichment analysis. It was found that the extract could regulate the positive response to external stimuli, inflammatory response, cytokine production and other biological processes by binding the active ingredients such as isorhamnetin, kaempferol, luteolin, quercetin and apigenin to the common targets (NOS3, MPO, MMP3, etc.), and play an anti-COVID-19 role. In the angiotensin-converting enzyme 2 (ACE2) activity inhibition assay, it was found that the stock solution of A. roxburghii liquid (for spray), and the supernatant after removing polysaccharides (mainly containing flavonoids) could to some extent inhibit the activity of ACE2. Crucially, in the experiment of 2019-nCOV-S pseudovirus infecting HEK-293T-ACE2 cells, we found that A. roxburghii liquid may exert anti-COVID-19 effects by blocking the binding of SARS-CoV-S protein to ACE2.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 45-53, 2024.
Article in Chinese | WPRIM | ID: wpr-1016461

ABSTRACT

ObjectiveTo explore the molecular mechanism of Sanhuang Xiexintang (SHXXT) in protecting stress gastric ulcer (SGU) in rats through network pharmacology, molecular docking, and animal experiments. MethodThe active ingredients and corresponding targets in SHXXT were collected and screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicine Information Database (TCMID), Bioinformation Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM), and Swiss Target Prediction database. SGU-related targets were screened from the Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), GeneCards database, and PharmGKB database. Herbal-ingredient-target (H-C-T) network was constructed by using Cytoscape 3.9.1 software. Protein-protein interaction (PPI) of drug and disease intersection targets was analyzed by using the Protein Interaction Platform (STRING) database. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted through the Database for Annotation Visualization and Integrated Discovery (DAVID). The active ingredients and key targets were validated using AutodockVina 1.2.2 molecular docking software, and the experimental results were further validated through animal experiments. ResultThe 55 active ingredients were screened, and 255 potential target genes for SHXXT treatment of SGU were predicted. The PPI analysis showed that protein kinase B (Akt), phosphatase and tensin homolog deleted on chromosome ten (PTEN), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase-2 (COX-2) are the core targets of SHXXT for protecting SGU. GO and KEGG analyses showed that SHXXT may affect the development of SGU by regulating various biological processes such as the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway and inflammatory processes. The molecular docking results showed that both the active ingredients and key targets had good binding ability. Animal experiments showed that compared with the blank group, the ulcer index (UI) of the model group was significantly increased (P<0.01), and the serum levels of TNF-α and IL-1β significantly increased (P<0.01). The phosphorylation level of PTEN in gastric mucosal tissue was significantly down-regulated (P<0.05). The phosphorylation levels of PI3K, Akt, and nuclear factor kappa-B (NF-κB) were significantly up-regulated (P<0.05). Compared with the model group, the UI of the treatment group was significantly reduced (P<0.01), and the serum levels of TNF-α and IL-1β were significantly reduced (P<0.01). The phosphorylation level of PTEN in gastric mucosal tissue was significantly up-regulated (P<0.01), and the phosphorylation levels of PI3K, Akt, and NF-κB were significantly downregulated (P<0.01). ConclusionThe application of network pharmacology prediction, molecular docking simulation, and animal experimental validation confirms that SHXXT regulates the PI3K/Akt/NF-κB signaling pathway to regulate the inflammatory response of rats and thus protects the gastric mucosa of SGU rats.

10.
Cancer Research on Prevention and Treatment ; (12): 210-215, 2024.
Article in Chinese | WPRIM | ID: wpr-1016399

ABSTRACT

The treatment of glioblastoma, the most prevalent malignant tumor in the central nervous system, poses considerable challenges. Glioblastoma multiforme, classified as a grade Ⅳ highly malignant brain glioma by the World Health Organization, is typically managed through a combination of surgery, postoperative chemotherapy, and radiotherapy. The treatment of glioblastoma is complicated by its infiltrative nature, genetic heterogeneity, and presence of the blood-brain barrier. Almost all cases of glioblastoma experience recurrence despite aggressive therapy, exploring the development of updated molecular treatment strategies that can improve overall efficacy. A crucial aspect in modern neurosurgery is the precise delineation of brain regions in terms of their anatomy and function. It serves as the fundamental basis for investigating variations in the distribution of brain gliomas. Hence, this review will elucidate the origin of glioblastomas and analyze the potential factors contributing to the spatially specific distribution of gliomas on the basis of a theoretical framework of brain connectomics research. Molecular characteristics, information pathways, tumor microenvironment landscape, and immunology will inform the analysis. We aim to identify novel biomolecular targets and therapeutic pathways to gain scientific insights for effective glioblastoma treatment.

11.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 99-106, 2024.
Article in Chinese | WPRIM | ID: wpr-1014572

ABSTRACT

The senescence of bone marrow mesenchymal stem cells (BM-MSCs) will induce age-related bone tissue degeneration and chronic inflammation, and reduce its application effect for cell therapy. More and more active ingredients of traditional chinese medicine have been proved to intervene BM - MSCs senescence, playing an important role in bone diseases prevention and treatment, and improving the therapeutic effect of BM-MSCs. In this paper, the latest research progress on the molecular mechanism of traditional chinese medicine active ingredients interfering BM-MSCs senescence was summarized, in order to provide new direction and reference basis for senescence intervention research and clinical application improvement of BM-MSCs.

12.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 11-25, 2024.
Article in Chinese | WPRIM | ID: wpr-1014564

ABSTRACT

AIM: To predict the core targets and related signaling pathways of Yi-xin-yin oral liquid for the treatment of arrhythmia, heart failure and myocarditis based on UHPLC-Q-TOF/MS, network pharmacology, molecular docking methods, cell experiments, according to the“homotherapy for heteropathy”theory in traditional Chinese medicine. METHODS: UHPLC-Q-TOF / MS was used to analyze and identify the chemical composition of Yi-xin-yin oral liquid Extract and the blood-absorbing components of rats oral administrated with Yi-xin-yin oral liquid extract, which compounds were applied in the databases searching for the potential targets (TCMSP, SwissTargetPrediction) and disease targets (OMIM, Genecard). Venn diagram was used for target intersection, and the subsequent protein-protein interaction network obtained core targets by STRING11.5 database, and then construct a "disease-component-target" network by cytoscape3.9.0. Finally, DAVID database was used to analysis GO function and KEGG enrichment analysis of core targets, and molecular docking validation was performed using Autodock vina software. And, validated with H9c2 cells for potential active ingredients and targets. RESULTS: A total of 156 compounds were identified from Yi - xin-yin Oral Liquid extract; 34 compounds were identified from rat serum, including 6-gin-gerol, isoliquiritigenin, glycyrrhizic acid and other compounds, and 139 intersecting targets were obtained. The KEGG pathway enrichment analysis mainly involved the TNF signaling pathway, IL-17 signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway and so on. The TNF and IL-6 targets were selected for molecular docking with the main compounds, and the docking results were good (less than -5 kcal/mol). In vitro cellular experiments have shown that Yi-xin-yin oral liquid can exert therapeutic effects by regulating TNF and IL-6. CONCLUSION: The main potential active ingredients of Yi-xin-yin oral liquid may be isoliquiritigenin, glycyrrhetinic acid, calycosin-7-glucoside, salvianolic acid B, and 6-gingerol, which mainly act on TNF, IL-6 and other targets to regulate specific signaling pathways and exert therapeutic effects.

13.
Chinese Pharmacological Bulletin ; (12): 582-591, 2024.
Article in Chinese | WPRIM | ID: wpr-1013657

ABSTRACT

Aim To screen and study the expression of long non-coding RNA (IncRNA) in rats with middle cerebral artery occlusion (MCAO) with MCAO treated with Tao Hong Si Wu decoction (THSWD) and determine the possible molecular mechanism of THSWD in treating MCAO rats. Methods Three cerebral hemisphere tissue were obtained from the control group, MCAO group and MCAO + THSWD group. RNA sequencing technology was used to identify IncRNA gene expression in the three groups. THSWD-regulated IncRNA genes were identified, and then a THSWD-regu-lated IncRNA-mRNA network was constructed. MCODE plug-in units were used to identify the modules of IncRNA-mRNA networks. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) were used to analyze the enriched biological functions and signaling pathways. Cis- and trans-regulatory genes for THSWD-regulated IncRNAs were identified. Reverse transcription real-time quantitative pol-ymerase chain reaction (RT-qPCR) was used to verify IncRNAs. Molecular docking was used to identify IncRNA-mRNA network targets and pathway-associated proteins. Results In MCAO rats, THSWD regulated a total of 302 IncRNAs. Bioinformatics analysis suggested that some core IncRNAs might play an important role in the treatment of MCAO rats with THSWD, and we further found that THSWD might also treat MCAO rats through multiple pathways such as IncRNA-mRNA network and network-enriched complement and coagulation cascades. The results of molecular docking showed that the active compounds gallic acid and a-mygdalin of THSWD had a certain binding ability to protein targets. Conclusions THSWD can protect the brain injury of MCAO rats through IncRNA, which may provide new insights for the treatment of ischemic stroke with THSWD.

14.
Chinese Pharmacological Bulletin ; (12): 573-581, 2024.
Article in Chinese | WPRIM | ID: wpr-1013656

ABSTRACT

Aim To explore the mechanism of action of Ruanmai decoction in treating atherosclerosis through network pharmacology. Methods The chemical components and targets of Ruanmai decoction were queried using TCMSP. Relevant targets for atherosclerosis were retrieved from DrugBank, GeneCards, OMIM, and TTD databases. The " Drug-Active Ingredient-Target" PPI network was constructed using Cyto-scape software. GO and KEGG enrichment analysis were performed using the David database. Molecular docking verification of key components with core targets was conducted using the Seesar software. Atherosclerosis mouse models were established by feeding ApoE mice with a high-fat diet, and Ruanmai decoction granules were administered orally. Aortic pathological sections were stained, blood lipids were measured, and immunofluorescence was used to detect Mac2 and YWHAZ protein expression. Western blot was used to detect p-p38MAPK and C-CASP3 protein expression. Results Ruanmai decoction screened a total of 72 active drug components corresponding to 168 target genes for the treatment of atherosclerosis. The targets were primarily enriched in biological processes related to lip-id metabolism, inflammation and immunity, oxidative stress, vascular endothelial function, cell proliferation and apoptosis, glycolysis, and ubiquitination. Signaling pathways such as МАРК, TNF, PDK-Akt, and IL-17 were also involved. Animal experiments verified that RMJ could regulate the p38MAPK signaling pathway by down-regulating key targets YWHAZ, p-p38MAPK, and C-CASP3, thereby reducing AS inflammation and inflammation-induced apoptosis. Conclusions Ruanmai decoction can inhibit the expression of YWHAZ and activate the p38MAPK signaling pathway, potentially improving vascular inflammation, lipid metabolism, oxidative stress, and other pathological processes by regulating the МАРК, TNF, PDK-Akt, and IL-17 signaling pathways, thus preventing and treating atherosclerosis.

15.
Chinese Pharmacological Bulletin ; (12): 565-573, 2024.
Article in Chinese | WPRIM | ID: wpr-1013655

ABSTRACT

Aim To explore the efficacy of levosimendan on hypoxia pulmonary hypertension through animal experiments, and to further explore the potential mechanism of action using network pharmacological methods and molecular docking technique. Methods The rat model of hypoxia pulmonary hypertension was constructed to detect right heart systolic pressure and right heart remodeling index. HE , Masson, and VG staining were core targets were screened out. GO and KEGG pathway enrichment analysis were performed using the DAVID database. Molecular docking of the core targets was performed with the AutoDock software. Results The results of animal experiments showed that levosimendan had obvious therapeutic effect on hypoxia pulmonary hypertension. The network pharmacology results showed that SRC, HSP90AA1, MAPK1, PIK3R1, AKT1, HRAS, MAPK14, LCK, EGFR and ESR1 used to analyze the changes of rat lung histopathology. Search the Swiss Target Prediction, DrugBank Online, BatMan, Targetnet, SEA, and PharmMapper databases were used to screen for drug targets. Disease targets were retrieved from the GeneCards, OMIM databases. The "drug-target-disease" network was constructed after identification of the two intersection targets. The protein interaction network was constructed and the were the key targets to play a therapeutic role. Molecular docking showed good docking of levosimendan with all the top five core targets with degree values. Conclusions Levosimendan may exert a therapeutic effect on hypoxia-induced pulmonary hypertension through multiple targets.

16.
Chinese Pharmacological Bulletin ; (12): 557-564, 2024.
Article in Chinese | WPRIM | ID: wpr-1013654

ABSTRACT

To explore the mechanism of spleen- were obtained for the treatment of acute-on-chronic livstrengthening and moisture-nourishing liver prescription er failure, and 244 intersecting target genes and 7 core (JPLSYGF) in the treatment of acute-on-chronic liver target genes were screened. Molecular docking showed failure using network pharmacology and the molecular that the core target genes AKT1, SRC, VEGFA, docking. Methods Relying on TCMSP and Gene- STAT3 , EGFR, MAPK3 , HRAS had good affinity with Cards and other databases, the relevant targets of JPL- quercetin, the main active component in the JPLSYGF in the treatment of acute-on-chronic liver failure SYGF, and had strong binding activity. In addition, in were obtained. String and Cytoscape were used to con- vivo tests verified that the JPLSYGF could reduce the struct PPI networks of targets, core targets were expression of HRAS, EGFR, STAT3 , SRC, and VEGscreened out, and DAVID was used for GO function FA, to delay the progression of acute-on-chronic liver annotation and KEGG pathway enrichment analysis. failure. Conclusions JPLSYGF may act on core tar- The main active ingredients of the traditional Chinese gets such as HRAS, EGFR, STAT3, SRC, VEGFA medicine compound formula for JPLSYGF were select- and so on, to achieve the effect of treating acute-oned with a bioavailability OB value of =Э 30% and a chronic liver failure. drug-like DL

17.
Chinese Pharmacological Bulletin ; (12): 371-380, 2024.
Article in Chinese | WPRIM | ID: wpr-1013630

ABSTRACT

Aim To explore the possible mechanism of "component-target-pathway" of Radix Hedysari against target organ damage caused by radiotherapy and chemotherapy, and to verify the " dose-effect" relationship of the main active components. Methods TCMSP, Uniprot, Swiss Target Prediction, GeneCards, Cytoscape, Omicshare and other platforms were used for network pharmacology analysis. Autodock, Pymol and Ligplot were used for molecular docking. The water extract of Radix Hedysari was used for animal experiment verification. The contents of eight main components were determined by HPLC. Results Four active components, eight key targets and four key pathways of Radix Hedysari were identified to resist the damage of target organs caused by radiotherapy and chemotherapy. Molecular docking showed that formononetin and quercetin had good binding activity with HSP90AA1, naringenin and MAPK3, and ursolic acid and TP53. Animal experiments showed that gastrointestinal factors MTL and VIP increased significantly, liver and kidney factors Cr, BUN, AST and ALT decreased significantly, inflammatory factor IL-10 increased significantly and TNF-a decreased significantly. The content of ononm was the highest (2 . 884 8 µg • g "

18.
Chinese Pharmacological Bulletin ; (12): 352-362, 2024.
Article in Chinese | WPRIM | ID: wpr-1013623

ABSTRACT

Aim To explore the molecular mechanism of Selaginella moelledorffii Hieron. in the treatment of laryngeal cancer. Methods According to the relevant literature reports, the chemical constituents of S. moellendorffii were obtained, and the active ingredients were screened out through the SwissADME database, and the targets were screened through the PharmMapper database. The laryngeal cancer-related targets were collected by searching OMIM and other databases, and the Venny 2.1.0 online platform was used to obtain the intersection of the two. Protein interaction analysis of the potential targets was performed using the STRNG platform. GO functional analysis and KEGG pathway analysis was carried out using DAVID database. Visual networks were built with Cytoscape 3.8.0 software. Molecular docking was validated by SYBYL-X 2. 0 software. MTT method, Hoechst 33258 staining method and Western blotting were also used for validation. Results At the molecular level, a total of 110 active ingredients of S. moellendorffii and 82 drug targets were screened out, 1,608 targets related to laryngeal cancer, and intersection of 34 targets. GO analysis yielded 135 entries, and KEGG analysis yielded a total of 61 pathways. Molecular docking results showed that the 11 key active ingredients such as 2", 3"-dihydrooch-naflavone wood flavonoids and 4 core target proteins such as MAPK1 had 95. 5% of good docking activity. At the cellular level, SM-BFRE was screened for its strongest inhibitory effect on laryngeal cancer cell proliferation through MTT assay. Furthermore, Hoechst 33258 staining showed that the decrease in Hep-2 cell viability produced by SM-BFRE was related to cell apoptosis. Finally, Western blot verified that SM-BFRE inhibited PI3K/Akt/NF through inhibition- K B/COX-2 pathway to induce apoptosis in laryngeal cancer cells. Conclusions To sum up, it fully reflects the multicomponent, multi-target, and multi-channel synergistic effect of S. moellendorffii in the treatment of laryngeal cancer, and provides a theoretical reference for further elucidation of the mechanism of action of S. moellendorffii in the treatment of laryngeal cancer.

19.
Chinese Pharmacological Bulletin ; (12): 381-389, 2024.
Article in Chinese | WPRIM | ID: wpr-1013622

ABSTRACT

Aim To discover the potential active compounds and possible mechanisms in rheumatoid arthritis (RA) treatment with Zhi-Huang-Zhi-Tong powder (ZHZTP) by using network pharmacology and in vitro study. Methods The active ingredient targets and disease targets of Zhihuang Zhitong Powder were searched and screened by database; they intersected to get a common target; and the "drug-component-target" relationship network diagram was constructed for GO and KEGG enrichment analysis of the overlapping genes; then the core components were docked with the core targets. Finally, based on the inflammation model of HUVECs in vitro, the efficacy and mechanism of Zhihuang Zhitong powder were verified by MTT method, plate scratch test and Western blot. Results Active compounds involved in RA treatment were screened in the present study, and the top two were ursolic acid and emodin, all playing crucial roles in RA treatment with ZHZTP. Additionally, the key target was AKTA, TNF and IL-6. GO and KEGG enrichment analysis revealed that ZHZTP regulated BP, MF and CC, and also focused on regulating AKTA, TNF and IL-6 signaling pathway. Molecular docking showed that interactions between key active compounds and key targets were stable. In vitro ZHZTP significantly inhibited cell viability and migration of TNF-a-stimulated HUVECs, and the involved mechanism may be associated with PI3K/AKT/m-TOR signaling. Conclusions The present study reveals that the potential active compounds of ZHZTP are ursolic acid and emodin, and moreover, the involved mechanisms of ZHZTP for RA treatment are associated with PI3 K/AKT/m-TOR signaling.

20.
Chinese Pharmacological Bulletin ; (12): 139-145, 2024.
Article in Chinese | WPRIM | ID: wpr-1013610

ABSTRACT

Aim To explore the potential targets and related signaling pathways of Agaricus blazei Murill (AbM ) extract in the treatment of chronic myeloid leukemia (CML) based on liquid chromatography mass spectrometry ( LC-MS ), network pharmacology, molecular docking, and were further verified by experiments in vitro. Methods The active components of AbM extract were retrieved from LC-MS, Swiss Target Prediction database was used to predict related targets, and CML disease target genes were obtained from Gen- eCards and DisGeNET databases. After screening the common targets of drug and CML, the protein-protein interaction network of the common targets was performed by STRING, and GO and KEGG enrichment a- nalysis were done by DAVID database. Cytoscape software was used to construct the network of target protein. Molecular docking was carried out by DockThor, and the Pymol software was used to make a visual picture. The inhibitory effect of AbM extract on leukemia cells K562 was determined by CCK-8 experiment, and the effect of AbM extract on the expression and phosphorylation level of related proteins was verified by Western blot. Results The prediction results showed that 126 active components of AbM extract, and 172 common targets were collected. KEGG pathway analysis results showed that PI3K/Akt/mTOR signaling pathway might play an important role in the treatment of CML disease. The IC

SELECTION OF CITATIONS
SEARCH DETAIL