Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Chinese Journal of Medical Instrumentation ; (6): 47-53, 2023.
Article in Chinese | WPRIM | ID: wpr-971302

ABSTRACT

OBJECTIVE@#Current mainstream PET scattering correction methods are introduced and evaluated horizontally, and finally, the existing problems and development direction of scattering correction are discussed.@*METHODS@#Based on NeuWise Pro PET/CT products of Neusoft Medical System Co. Ltd. , the simulation experiment is carried out to evaluate the influence of radionuclide distribution out of FOV (field of view) on the scattering estimation accuracy of each method.@*RESULTS@#The scattering events produced by radionuclide out of FOV have an obvious impact on the spatial distribution of scattering, which should be considered in the model. The scattering estimation accuracy of Monte Carlo method is higher than single scatter simulation (SSS).@*CONCLUSIONS@#Clinically, if the activity of the adjacent parts out of the FOV is high, such as brain, liver, kidney and bladder, it is likely to lead to the deviation of scattering estimation. Considering the Monte Carlo scattering estimation of the distribution of radionuclide out of FOV, it's helpful to improve the accuracy of scattering distribution estimation.


Subject(s)
Positron Emission Tomography Computed Tomography , Scattering, Radiation , Computer Simulation , Brain , Monte Carlo Method , Phantoms, Imaging , Image Processing, Computer-Assisted
2.
Journal of Medical Biomechanics ; (6): E040-E046, 2019.
Article in Chinese | WPRIM | ID: wpr-802503

ABSTRACT

Objective The current manipulator with double parallel quadrilateral mechanism should be connected in series with a flexible degree of freedom (DOF) mechanism, which increases the volume of the manipulator, decreases the motion flexibility and creates the interference between the mechanical arms that hold the mirror and the device. Aimed at solving this problem, a novel mechanical arm was put forward to enhance the motion flexibility and reduce the volume of the manipulator. Methods The mechanical arm was designed by using the mechanism of five-link, slider and slide rail lower pair and wire transmission to realize the telescopic movement of the end effector. The kinematics model of the manipulator was established, and the MATLAB was used as the simulation tool to verify the correctness of the D-H parameters under the specific zero joint angle, and the motion equation of the manipulator was solved. Meanwhile, the three-dimensional workspace of the end effector was obtained by using Monte Carlo algorithm, and the preoperative plan of animal experiment for 3 arms was performed. Finally, cholecystectomy and other operations were acted in pigs, to verify the rationality and maneuverability of the design of double 5-link 2-DOF manipulator. Results The working space of Monte Carlo algorithm under MATLAB environment was -650.4 mm<x<649 mm, 163.8 mm<y<1 202 mm and -254.6 mm<z<829.8 mm. Sixteen cases of pig cholecystectomy were successfully completed, with an average operation time of 51 minutes. Conclusions The novel double 5-link 2-DOF manipulator could successfully complete cholecystectomy and other operations in pigs, which had no other symptoms after the operation. There was no interference between the mechanical arms, which fully verified the feasibility of the design scheme of the robot manipulator for minimally invasive surgery.

3.
Chinese Journal of Radiation Oncology ; (6): 1083-1087, 2018.
Article in Chinese | WPRIM | ID: wpr-708326

ABSTRACT

Objective To evaluate the effect of the discrepancy of the dose calculation results of different algorithms upon the CyberKnife lung tumor treatment plan,and assess the impact of tumor volume and location on the dose calculation results. Methods Thirty-two cases of lung tumors were treated with MultiPlan 5.2.1 planning system of CyberKnife VSI.Ray Tracing and Monte Carlo algorithms were adopted to calculate the dose distribution, and then the calculation results were statistically compared between two algorithms. Results For the enrolled cases,the calculation results of these two algorithms demonstrated that the deviation range of prescription dose coverage of planning target volume (PTV),conformal index,new conformal index and uniformity index were 0.93%~68. 80%, 0.87%~17. 21%,-212.38%~8. 27% and 0%~15. 17%, respectively. Conclusions In the CyberKnife treatment of lung tumors, the volume and location of tumors exert significant impact on the discrepancies of the dose calculation results of different algorithms. The smaller tumor volume and longer beam heterogeneity path are likely to generate a greater discrepancy. It is recommended to adopt or refer to the calculation results of Monte Carlo algorithm to deliver corresponding treatment.

4.
Chinese Journal of Radiation Oncology ; (6): 69-73, 2017.
Article in Chinese | WPRIM | ID: wpr-509121

ABSTRACT

Objective To study the accuracy of collapsed cone convolution ( CCC) and anisotropic analytical algorithm ( AAA) in dosimetric calculation on the air cavity interface. Methods A BEAMnrc/EGSnrc Monte Carlo ( MC ) simulation was performed on a Varian Trilogy linear accelerator. The IBA Dosimetry “blue phantom” 3D scanning system was used to verify the accuracy and reliability of the MC simulation. Central axis depth dose distribution and lateral dose profile in a water?equivalent phantom with variously sized air cavities were calculated by CCC and AAA. The obtained depth dose distribution and lateral dose profile were compared with those by MC simulation and EBT2 film, respectively. Results Both CCC and AAA overestimated the dose on the air cavity interface. In spite of some errors, CCC had a higher accuracy than AAA. The errors were mainly related to computational grid, field size, photon energy, cavity size, and the number of fields. Conclusion Electronic disequilibrium on the air cavity interface should be taken into account when CCC and AAA are used for dosimetric calculation in treatment planning system.

5.
Chinese Journal of Radiological Medicine and Protection ; (12): 670-673, 2015.
Article in Chinese | WPRIM | ID: wpr-481010

ABSTRACT

Objective To investigate the differences between Monte Carlo (MC) calculated doseto-water (Dw) and dose-to-medium (Dm) for lung cancers treated with intensity-modulated radiotherapy (IMRT).Methods A total of 10 lung carcinoma patients with 5-field IMRT treatment plans were stratified sampling randomly selected for this study,which were performed on Monaco treatment planning system (TPS) with MC algorithm.Using the patients' own CT images as quality assurance (QA) phantoms,two kinds of QA plan were calculated,one was the Dm,and another was the Dw plan.Dose volume histogram (DVH) parameters and the subtraction of two plans were used to evaluate the spatial distribution of the difference between the Dm and Dw.Results Differences between dose-volume indices computed with Dm and Dw for the PTV65 and PTV50 doses (D50%,D98% and D2%) were-0.3%,-0.2%,0.3% and 0.1%,-0.6%,0.4%,respectively,of which the D50% of PTV65 and D98% of PTV50 had statistical difference (t =-2.536,-3.776,P < 0.05).For normal tissues,spinal cord,heart,lung and esophagus,the D50% differences between Dm and Dw were 0.3%,1.1%,-0.2% and -0.1%,of which the Dm of spinal cord and heart were slightly lower than the Dw (t =2.535,3.254,P < 0.05).For the D2% of the normal tissues,the differences were 0.3%,-0.6%,-0.7% and 0.6%,the differences were statistically significant (t =2.311,-4.105,-3.878,6.214,P<0.05).All the differences were within 2%.Meanwhile planned subtraction analysis showed the differences between the Dm and Dw varied very much with the other body parts of the patient,especially for bone tissues,and the two doses were significant difference (> 5%).Conclusion In the course of clinical application,the relative differences between Dm and Dw for lung cancers MC calculations should be noted when considering the dose limitations of bone tissue.

6.
Chinese Journal of Radiation Oncology ; (6): 72-76, 2012.
Article in Chinese | WPRIM | ID: wpr-417837

ABSTRACT

ObjectiveTo compare the calculation precision of the collapsed cone convolution (CCC) algorithm and pencil beam convolution (PBC) algorithm in TPS in heterogeneous tissue.Methods We made two virtual lung phantoms,one is single field phantom,In this case the photon beam incident into the phantom,the other is the two fields phantom and a cubic'tumor' was placed in the centre of the phantom.two opposite photon beams incident into the phantom.We calculated the dose of the'tumor' and the lung with the CCC and PBC algorithm.We compared the results in both case with if obtained from Monte Carlo (MC) method.ResultsIn the single field phantom,the photon beam incident from the high-density tissue to the low-density lung equivalent tissue,compared with the result of MC algorithm PBC algorithm overestimated the lung equivalent tissue dose (t =3.90,P =0.012) and the result of CCC algorithm is close to it ( t =2.25,P =0.087 ).In the two fields phantom,tumor boundary dose calculated by CCC algorithm and the MC algorithm are lower than that of the PBC algorithm (t =2.43,3.18,P =0.038,0.011 ),and the difference increase when the field size decrease, the beam energy increase and the density of the inhomogeneity decrease.ConclusionsWe had better use the CCC algorithm when calculating the dose of the tumor surrounded by low-density tissue or the tumor behind the low-density tissue,such as the lung cancer,esophageal cancer etc.

7.
The Journal of the Korean Society for Therapeutic Radiology and Oncology ; : 238-248, 2010.
Article in Korean | WPRIM | ID: wpr-86038

ABSTRACT

PURPOSE: To compare the dose distributions between three-dimensional (3D) and four-dimensional (4D) radiation treatment plans calculated by Ray-tracing or the Monte Carlo algorithm, and to highlight the difference of dose calculation between two algorithms for lung heterogeneity correction in lung cancers. MATERIALS AND METHODS: Prospectively gated 4D CTs in seven patients were obtained with a Brilliance CT64-Channel scanner along with a respiratory bellows gating device. After 4D treatment planning with the Ray Tracing algorithm in Multiplan 3.5.1, a CyberKnife stereotactic radiotherapy planning system, 3D Ray Tracing, 3D and 4D Monte Carlo dose calculations were performed under the same beam conditions (same number, directions, monitor units of beams). The 3D plan was performed in a primary CT image setting corresponding to middle phase expiration (50%). Relative dose coverage, D95 of gross tumor volume and planning target volume, maximum doses of tumor, and the spinal cord were compared for each plan, taking into consideration the tumor location. RESULTS: According to the Monte Carlo calculations, mean tumor volume coverage of the 4D plans was 4.4% higher than the 3D plans when tumors were located in the lower lobes of the lung, but were 4.6% lower when tumors were located in the upper lobes of the lung. Similarly, the D95 of 4D plans was 4.8% higher than 3D plans when tumors were located in the lower lobes of lung, but was 1.7% lower when tumors were located in the upper lobes of lung. This tendency was also observed at the maximum dose of the spinal cord. Lastly, a 30% reduction in the PTV volume coverage was observed for the Monte Carlo calculation compared with the Ray-tracing calculation. CONCLUSION: 3D and 4D robotic radiotherapy treatment plans for lung cancers were compared according to a dosimetric viewpoint for a tumor and the spinal cord. The difference of tumor dose distributions between 3D and 4D treatment plans was only significant when large tumor movement and deformation was suspected. Therefore, 4D treatment planning is only necessary for large tumor motion and deformation. However, a Monte Carlo calculation is always necessary, independent of tumor motion in the lung.


Subject(s)
Humans , Four-Dimensional Computed Tomography , Lung , Lung Neoplasms , Organothiophosphorus Compounds , Population Characteristics , Prospective Studies , Spinal Cord , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL