Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add filters








Year range
1.
Journal of Medical Biomechanics ; (6): E110-E115, 2021.
Article in Chinese | WPRIM | ID: wpr-904373

ABSTRACT

Objective To study the influence of different trajectories of 3-PH/R ankle rehabilitation robot on joints and muscles. Methods The 3-PH/R ankle rehabilitation robot was simplified and imported into biomechanical modeling software by analyzing the kinematics principles. Using the actual motion trajectory of ankle rehabilitation robot as model driving, the joint and muscle forces were compared under three different trajectories, namely, dorsiflexion/plantarflexion, inversion/eversion and nutation. The correlation analysis on three motion trajectories was conducted. Results Nutation could satisfy the function of both plantar dorsiflexion/plantarflexion, and inversion/eversion, and made the ankle muscles fully exercised. The maximum difference in joint force under three different rehabilitation trajectories was 0.3 N. Different muscles had different sensitivity to trajectories. Conclusions The continuous dynamic analysis of muscle force and joint force under three kinds of rehabilitation trajectories was implemented. The results have certain theoretical significance and clinical reference value for the clinical application of ankle rehabilitation robot and the formulation of rehabilitation trajectory.

2.
Journal of Biomedical Engineering ; (6): 732-741, 2021.
Article in Chinese | WPRIM | ID: wpr-888234

ABSTRACT

Robot-assisted fracture reduction usually involves fixing the proximal end of the fracture and driving the distal end of the fracture to the proximal end in a planned reduction path. In order to improve the accuracy and safety of reduction surgery, it is necessary to know the changing rule of muscle force and reduction force during reduction. Fracture reduction force was analyzed based on the muscle force of femoral. In this paper, a femoral skeletal muscle model named as PA-MTM was presented based on the four elements of skeletal muscle model. With this, pinnate angle of the skeletal muscle was considered, which had an effect on muscle force properties. Here, the muscle force of skeletal muscles in different muscle models was compared and analyzed. The muscle force and the change of the reduction force under different reduction paths were compared and simulated. The results showed that the greater the pinnate angle was, the greater the influence of muscle strength was. The biceps femoris short head played a major role in the femoral fracture reduction; the force in the


Subject(s)
Humans , Femur/surgery , Fractures, Bone , Muscle, Skeletal , Plastic Surgery Procedures , Tendons
3.
Journal of Medical Biomechanics ; (6): E481-E488, 2020.
Article in Chinese | WPRIM | ID: wpr-862373

ABSTRACT

Objective To build a method for calculating the optimal length of hamstring muscles in vivo, and make comparison with other indirect parameters which represent the optimal length. Methods By synchronously recording knee flexion torque and kinematic data, the musculoskeletal model of lower limbs was built to obtain hamstring strength and muscle length, and to further calculate the optimal length of hamstring muscles. Results Flexion angle at peak knee flexion torque was significantly greater than that at peak hamstring strength and their correlation coefficient was 0.741. The optimal lengths of each bi-articulated hamstring muscles were significantly greater than the corresponding muscle lengths during standing and their correlation coefficients was low. Conclusions The established estimating method for optimal length of hamstring muscles provided references for future studies on injury mechanism and risk factors. Flexion angle at peak knee flexion torque could partly represent the optimal length of hamstring. It is not suggested that hamstring muscle length during standing should be used as an approximation of hamstring optimal length.

4.
Journal of Medical Biomechanics ; (6): E259-E264, 2020.
Article in Chinese | WPRIM | ID: wpr-862322

ABSTRACT

OpenSim musculoskeletal modelling has developed rapidly and been widely utilized due to its open-source. Apart from calculation of the basic kinematic and kinetic data, subject-specific OpenSim model could reveal information of neuromuscular control, muscle forces and geometry, and contact forces. Image-based model-ling of the neuromuscular control in pathological gait and ergonomic evaluation of the prostheses confirmed the reliability and feasibility, but limitations in time-consumption and foot-ankle modelling also existed. The subject-specific modelling of pathological gait could improve the accuracy and diversity of clinical biomechanics and medical engineering research. It could also reveal the pathological features, and provide scientific evidence to design specific and accurate protocols of motor function diagnosis and rehabilitation, health monitoring and evaluation, and ergonomic customization and assessment of devices, as well as future directions and implications in the research field.

5.
Journal of Medical Biomechanics ; (6): E027-E034, 2019.
Article in Chinese | WPRIM | ID: wpr-802501

ABSTRACT

Objective Based on OpenSim platform, an improved musculoskeletal model was developed to analyze the force of lumbar muscle groups under forward flexion. Methods The existing lumbar musculoskeletal model was improved via modifying constraints of lumbar vertebrae to restore them into 6 degrees of freedom (DOF). The 30 year-old and 70 year-old muscle models were established respectively by adjusting muscle parameters according to Thelen’s model, adding stiffness matrixes and abdominal pressure (AP) characterized by concentrated force to investigate the effects of arm swing, movement velocity, varying AP and muscle aging on the force distribution of 9 lumbar muscle groups during forward flexion. Results A multi-body musculoskeletal model with 9 lumbar muscle groups was developed. Based on the computations of 0°-70° flexion, the results showed that arm swing reduced the force of psoas and external oblique abdominis, while under the movement of forward flexing to 70° and returning up-right, the force of psoas, erector spinae, rectus and external oblique abdominis obviously increased, when the time of flexing-returning process was reduced from 5 s to 2.5 s, and in the 5 s case, increasing AP reduced the force of psoas but increased the force of transversus, internal and external oblique abdominis. In the 2.5 s case, there was no obvious difference between the 30 year-old and 70 year-old muscle models under different conditions. Conclusions The developed model provides an effective method to analyze the force of lumbar spine and muscles, and it certainly shows a potential application in the fields of kinematic mechanics and rehabilitation engineering with further development of basic theory.

6.
Journal of Medical Biomechanics ; (6): E608-E614, 2019.
Article in Chinese | WPRIM | ID: wpr-802401

ABSTRACT

Objective To establish a personalized musculoskeletal multi-body dynamics model of total knee replacement (TKR) by two software nmsBuilder and OpenSim, and verify this established model by using bouncy and medthrust gait patterns. Methods Based on skeletal data from a patient, the body, skeletal landmark clouds and muscular landmark clouds were established for automatically generating reference systems and muscles. The musculoskeletal model generated by nmsBuilder was introduced into OpenSim, and inverse kinematics, static optimization and knee joint force analysis were performed successively. Finally, the model was driven by bouncy gait and medthrust gait respectively, and the results were compared with experimental measurements. Results Except for the lateral joint contact forces, the predicted magnitude and trend of knee joint contact forces by the model had a good agreement with the experimental data, and the constructed skeletal muscle multi-body dynamics model could be used for knee joint research. Conclusions The established musculoskeletal multi-body dynamics model could predict the medial, lateral and total tibiofemoral joint contact forces simultaneously by inputting the marker positions and the ground reaction forces. The research ideas of this study can provide references for designing personalized knee prostheses for TKR patient.

7.
Asian Spine Journal ; : 562-569, 2017.
Article in English | WPRIM | ID: wpr-173105

ABSTRACT

STUDY DESIGN: In vivo biomechanical study using a three-dimensional (3D) musculoskeletal model for elderly individuals with or without pelvic retroversion. PURPOSE: To evaluate the effect of pelvic retroversion on the sagittal alignment of the spine, pelvis, and lower limb in elderly females while standing and walking. OVERVIEW OF LITERATURE: Patients with hip–spine syndrome have concurrent hip-joint and spine diseases. However, the dynamic sagittal alignment between the hip joint and spine has rarely been investigated. We used a 3D musculoskeletal model to evaluate global spinopelvic parameters, including spinal inclination and pelvic tilt (PT). METHODS: A total of 32 ambulant females (mean age=78 years) without assistance were enrolled in the study. On the basis of the radiographic measurement for PT, participants were divided into the pelvic retroversion group (R-group; PT≥20°) and the normal group (N-group; PT<20°). A 3D musculoskeletal motion analysis system was used to analyze the calculated value for the alignment of spine, pelvis, and lower limb, including calculated (C)-PT, sagittal vertical axis (C-SVA), pelvic incidence, lumbar lordosis, T1 pelvic angle (C-TPA), as well as knee and hip flexion angles while standing and walking. RESULTS: While standing, C-PT and C-TPA in the R-group were significantly larger than those in the N-group. Hip angle was significantly smaller in the R-group than in the N-group, unlike knee angle, which did not show difference. While walking, C-SVA and C-TPA were significantly increased, whereas C-PT decreased compared with those while standing. The maximum hip-flexion angle was significantly smaller in the R-group than in the N-group. There was a significant correlation between the radiographic and calculated parameters. CONCLUSIONS: The 3D musculoskeletal model was useful in evaluating the sagittal alignment of the spine, pelvis, and leg. Spinopelvic sagittal alignment showed deterioration while walking. C-PT was significantly decreased while walking in the R-group, indicating possible compensatory mechanisms attempting to increase coverage of the femoral head. The reduction in the hip flexion angle in the R-group was also considered as a compensatory mechanism.


Subject(s)
Aged , Animals , Female , Humans , Extremities , Head , Hip , Hip Joint , Incidence , Knee , Leg , Lordosis , Lower Extremity , Pelvis , Spine , Walking
8.
Journal of Medical Biomechanics ; (6): E030-E037, 2015.
Article in Chinese | WPRIM | ID: wpr-804408

ABSTRACT

Objective To analyze the badminton athletes’dynamic responses in their lower limbs under impact loads. Methods A human musculoskeletal model was established based on AnyBody Modeling System software and verified by measuring surface electromyography (EMG). The muscle force, joint force, joint torque of lower limbs during right Front-Court Lunge Step in badminton were studied by inverse dynamic simulation and analysis through Vicon motion capture system and force platform. Results The musculoskeletal model was validated to be effective by EMG. During right Front-Court Lunge Step in badminton,the force peak of the hip and ankle joint in Z direction was larger than that in X and Y direction, and the force peak of the knee joint in X direction was larger than that in Y and Z direction. During buffer period, the hip joint in X, Y, Z direction showed adduction, extension and internal rotation torque, respectively, the knee joint in X, Y, Z direction showed abduction, flexion and external rotation torque, respectively, and the ankle joint in X, Y direction showed varus and plantar flexion torque, respectively. The peak torque of the hip, knee and ankle joint in X direction was significantly larger than that in Y and Z direction. Vastus lateralis, biceps femoris, anterior tibial and medial gastrocnemius played a larger role against the ground reaction, while rectus femoris, semitendinosus, soleus played a relatively smaller role against the ground reaction. Conclusions The established musculoskeletal model in the study can provide a technical platform to analyze athletes’biomechanical properties of lower limbs under impact loads. To avoid sport injuries, more attention should be paid to the effect from ground reaction force load at touchdown instant on hip, knee and ankle joints in anteroposterior and mediolateral direction during footwork similar to Front-Court Lunge Step in badminton, and at the same time, the strength training of vastus lateralis, biceps femoris, anterior tibial and medial gastrocnemius of badminton players should not be ignored during specialized training.

9.
Journal of Medical Biomechanics ; (6): E416-E420, 2012.
Article in Chinese | WPRIM | ID: wpr-804000

ABSTRACT

Objective To investigate the effect from helmet mass and deviation of mass center on neck muscle activity in military pilots. Methods Based on AnyBody software platform, a musculoskeletal model of head neck complex was established including C0, C1-C7, T1 and 136 muscles. Concentrated loads were applied to simulate the role of helmet. Strength from seven main muscle groups under different helmet mass, mass center and +Gz acceleration loads were simulated and calculated.Results When mass center of the helmet and the head coincided with each other, the muscle groups (such as semispinalis, levator scapulae, splenius capitis and cervicis) which took charge of extension were activated. Muscle strength increased with helmet mass linearly and +Gz acceleration loads would make this increase multiplied. Flexion muscle began to work when mass center of the helmet moved backward, so did the lateral bending muscles when mass center of helmet moved in the right-and-left direction. Conclusions Helmet mass and its center have an obvious influence on neck muscle activity in military pilots. The musculoskeletal model established in this paper can be used to calculate the change in muscle strength under different situations and conduct a quantitative analysis for helmet design and validation.

10.
Journal of Medical Biomechanics ; (6): E577-E581, 2012.
Article in Chinese | WPRIM | ID: wpr-803911

ABSTRACT

Objective To analyze the neck muscle activity during head flexion and explore the cause of muscle fatigue in human head and neck. Methods A musculoskeletal model of head neck complex was established based on AnyBody software platform, and the muscle strengths during head flexion were simulated according to the input data measured by Vicon motion capture system, which were validated with the literature data. Results The neck muscles played a major role during head flexion. The force assignment mode among muscles was different during 45% and 75% flexion process. The integral of muscle strengths on flexion angle WM could reflect the muscle fatigue to some extent. Since the largest WM was found in the semispinalis cervicis and multifidus muscles during head flexion, it may indicate that those muscles have the easy tendency to be fatigue. Conclusions The musculoskeletal model established in this paper can provide a technical support for the exploration of neck fatigue mechanism.

11.
The Journal of the Korean Orthopaedic Association ; : 130-139, 2011.
Article in Korean | WPRIM | ID: wpr-649344

ABSTRACT

PURPOSE: Crouch gait is one of the common pathologic gaits in children with cerebral palsy. Hamstring lengthening for alleviation of knee flexion is often considered as a first choice for the treatment of crouch gait. However, there have been a variety of reports about the lengths of the hamstring muscle. The purpose of this study was to classify the crouch gait on the transverse plane and to suggest a guide line for hamstring lengthening by analyzing the length of these muscles. MATERIALS AND METHODS: The subjects for this study were selected in ambulatory spastic diplegia patients with crouch gait. A total of sixty-two patients (124 cases) were included. The gait parameters and the muscle lengths were compared. The range of +/-1 standard deviation of the normal middle stance hip rotation was considered as the normal range. The subjects were divided into three groups as hip external rotated (group I), normal (group II) and hip internal rotated (group III) according to the hip rotation. RESULTS: The flexion of the knee and hip was the greatest in group III and dorsiflexion of the ankle was the least in group I. On comparison of moment and power on the sagittal plane, there was no significant difference among the groups. In group III, the percent lengths of the adductor, biceps femoris and gracilis muscles were increased the most, whereas the percent length of the semimembranosus was decreased the most. There was no statistical difference between groups I and II and the normal control group. CONCLUSION: Irrespective of the hip rotation, the length of the hamstring muscle in patients with crouch gait did not differ compared to that of the normal control. But if rotational osteotomy is done for the correction of the increased femoral anteversion in group III, then we should consider lengthening the semimembranosus muscle.


Subject(s)
Animals , Child , Humans , Ankle , Cerebral Palsy , Gait , Hip , Knee , Muscles , Osteotomy , Reference Values
12.
Journal of Medical Biomechanics ; (6): E040-E044, 2010.
Article in Chinese | WPRIM | ID: wpr-803685

ABSTRACT

Objective In order to avoid potential injuries imposed to human body, it can be feasible to use the musculoskeletal models which can be reconstructed from the cadaver color cryosection (CCC) images, computerized tomography (CT) images, magnetic resonance (MR) images or other images to analyze the dynamic properties of muscles in vivo during human movement. Methods We reconstruct the lower limb musculoskeletal model and define the uniform joint coordinate system (JCS) on the model and the subject. The coordinate transformation of the muscle attachment points both on the model and the subject is described in detail. Results The length and the moment arm of the biceps femoris (short head) during knee flexion are calculated and analyzed. Conclusion This method plays an important role in improving the kinematics and dynamic simulation and the muscle force estimation.

13.
Journal of Medical Biomechanics ; (6): 40-44, 2010.
Article in Chinese | WPRIM | ID: wpr-737287

ABSTRACT

Objective In order to avoid potential injuries imposed to human body,it could be feasible to use the musculoskeletal models which can be reconstructed from the cadaver color cryosection(CCC)images,computerized tomography(CT)images,magnetic resonance(MR)images or other images to analyze the dynamic properties of muscles in vivo during human movement.Mothod We reconstruct the lower limb musculoskeletal model and define the uniform ioint coordinate system(JCS)on the model and the subject.The coordinate transformation of the muscle attachment points both on the model and the subject is described in detail.Results The length and the moment arm of the biceps femoris(short head)during knee flexion are calculated and analyzed.Conclusion This method plays an important role in improving the kinematics and dynamic simulation and the muscle force estimation.

14.
Journal of Medical Biomechanics ; (6): 40-44, 2010.
Article in Chinese | WPRIM | ID: wpr-735819

ABSTRACT

Objective In order to avoid potential injuries imposed to human body,it could be feasible to use the musculoskeletal models which can be reconstructed from the cadaver color cryosection(CCC)images,computerized tomography(CT)images,magnetic resonance(MR)images or other images to analyze the dynamic properties of muscles in vivo during human movement.Mothod We reconstruct the lower limb musculoskeletal model and define the uniform ioint coordinate system(JCS)on the model and the subject.The coordinate transformation of the muscle attachment points both on the model and the subject is described in detail.Results The length and the moment arm of the biceps femoris(short head)during knee flexion are calculated and analyzed.Conclusion This method plays an important role in improving the kinematics and dynamic simulation and the muscle force estimation.

15.
Journal of Medical Biomechanics ; (6): 40-44, 2010.
Article in Chinese | WPRIM | ID: wpr-471422

ABSTRACT

Objective In order to avoid potential injuries imposed to human body,it could be feasible to use the musculoskeletal models which can be reconstructed from the cadaver color cryosection(CCC)images,computerized tomography(CT)images,magnetic resonance(MR)images or other images to analyze the dynamic properties of muscles in vivo during human movement.Mothod We reconstruct the lower limb musculoskeletal model and define the uniform ioint coordinate system(JCS)on the model and the subject.The coordinate transformation of the muscle attachment points both on the model and the subject is described in detail.Results The length and the moment arm of the biceps femoris(short head)during knee flexion are calculated and analyzed.Conclusion This method plays an important role in improving the kinematics and dynamic simulation and the muscle force estimation.

16.
Journal of Korean Orthopaedic Research Society ; : 1-11, 2009.
Article in Korean | WPRIM | ID: wpr-12713

ABSTRACT

PURPOSE: Patients with planovalgus show various abnormal gaits and these are affected by the different length and velocity of the muscles around knee and ankle. The purpose of study is to compare the length and velocity of gastrocnemius in cerebral palsy with planovalgus by ankle plantarflexion-knee extension couple. MATERIALS AND METHODS: 22 patients with spastic diplegia who have planovalgus were included. The mean age was 12 years (5 years~18 years). Group I consisted of 7 patients with knee flexion more than 30 degrees and Group II consisted of 15 patients with knee flexion less than 15 degrees during mid-stance phase. Normal groups were consisted of 15 normal children. RESULTS: In patients with planovalgus, ankle dorsiflexion during stance was decreased but ankle plantarflexion was not different compared to normal. There is no difference in the percent length of gastrocnemius compared to normal, but the velocity was decreased. The percent length of gastrocnemius was decreased in group I, but there were no difference in the velocity. CONCLUSION: The decreased velocity of gastrocnemius is the cause of disability of ankle plantarflexion-knee extension couple and the variable length of gastrocnemius is the cause of variability of abnormal gait.


Subject(s)
Animals , Child , Humans , Ankle , Cerebral Palsy , Foot , Foot Deformities , Gait , Knee , Muscle, Skeletal , Muscles
17.
Journal of Korean Orthopaedic Research Society ; : 186-195, 2003.
Article in Korean | WPRIM | ID: wpr-24983

ABSTRACT

PURPOSE: This study validated the musculoskeletal model of the human lower extremity by comparative study between calculated muscle parameters through simulation using modified hill-type model and measured muscle parameters through isokinetic exercise. The relationship between muscle forces and moments participated in motion was quantified from the results of simulation. MATERIALS AND METHODS: For simulation of isokinetic motion, a three-dimensional anatomical knee model was constructed using gait analysis. The EMG-force model was used to determine muscle activation level exciting muscles. The modified Hill-type model was used to calculate individual muscle force and moment in dynamic analysis. This method was validated by comparing analytical data with experimental data. RESULTS: The results showed that there was a significant correlation between calculated torques from simulation and measured torque from isokinetic motion experiments (R=0.97). We also found that muscle forces and moments during knee flexion and extension have nonlinearly proportional or inversely proportional relationship, since lower extremity muscles were simultaneously involved in flexion/extension motion and inner/outer rotation. CONCLUSION: We concluded that the simulation by using musculoskeletal model may be a useful mean to predict and recover musculoskeletal-related diseases, and analyze complicated experiment such as clash condition.


Subject(s)
Humans , Gait , Knee Joint , Knee , Lower Extremity , Muscles , Torque
SELECTION OF CITATIONS
SEARCH DETAIL