Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Braz. j. med. biol. res ; 52(1): e7952, 2019. tab, graf
Article in English | LILACS | ID: biblio-974269

ABSTRACT

Malignant melanoma is an aggressive skin cancer with a high mortality rate. Nucleolar protein 14 (NOP14) has been implicated in cancer development. However, the role of NOP14 in malignant melanoma progression remains largely unclear. In this study, we observed that malignant melanoma tissue showed NOP14 down-regulation compared to melanocytic nevi tissues. Moreover, we observed that NOP14 expression was significantly associated with melanoma tumor thickness and lymph node metastasis. NOP14 overexpression in melanoma cells suppressed proliferation, caused G1 phase arrest, promoted apoptosis, and inhibited melanoma cell migration and invasion. Further investigations revealed that NOP14 overexpression reduced the expression levels of Wnt3a, β-catenin, and GSK-3β of the Wnt/β-catenin pathway. In summary, we demonstrated that NOP14 inhibited melanoma cell proliferation and metastasis by regulating the Wnt/β-catenin signaling pathway.


Subject(s)
Humans , Male , Female , Middle Aged , Skin Neoplasms/pathology , Nuclear Proteins/metabolism , beta Catenin/metabolism , Wnt Signaling Pathway/genetics , Melanoma/secondary , Skin Neoplasms/metabolism , Immunohistochemistry , Nuclear Proteins/genetics , Gene Expression Regulation, Neoplastic , Cell Movement , Blotting, Western , Apoptosis , Reverse Transcriptase Polymerase Chain Reaction , Cell Line, Tumor , Cell Proliferation , beta Catenin/genetics , Lymphatic Metastasis , Melanoma/metabolism
2.
Journal of Southern Medical University ; (12): 1360-1365, 2018.
Article in Chinese | WPRIM | ID: wpr-771467

ABSTRACT

OBJECTIVE@#To investigate the expression profile of miR-122-5p in melanoma tissues and the effect of miR-122-5p on the proliferation, cell cycle and apoptosis of human melanoma cell lines SK-MEL-110 and A375.@*METHODS@#The expression profiles of miR-122-5p in melanoma and pigmented nevus tissues were detected using real-time fluorescence quantitative PCR (qRT-PCR). SK-MEL-110 and A375 cells transfected with miR-122-5p inhibitor or negative control inhibitor (NC) I were examined for miR-122- 5p expression using qRT-PCR and changes in cell proliferation, cell cycle and apoptosis using MTT assay or flow cytometry. NOP14 mRNA and protein expressions in the cells were detected using qRT- PCR and Western blotting, respectively. Luciferase reporter assay was used to confirm the identity of NOP14 as the direct target of miR-122-5p.@*RESULTS@#The relative expression of miR-122-5p in human pigmented nevus tissues and melanoma tissues was 1.23±0.270 and 7.65 ± 1.37, respectively. The relative expression of miR-122-5p in SK-MEL-110 and A375 cells transfected with miR-122-5p inhibitor was 0.21 ± 0.08 and 0.17 ± 0.05, respectively. miR-122-5p inhibitor obviously inhibited the cell proliferation and increased the percentage of cells in G1 stage in both SK-MEL-110 and A-375 cells, but did not cause obvious changes in the apoptosis of the two cells. miR-122-5p inhibitor did not significantly affect the expression level of NOP14 mRNA, but obviously increased the expression level of NOP14 protein. Luciferase reporter assay revealed a significantly lower luciferase activity in cells co-transfected with miR-122-5p mimics and wild-type psi-CHECK2-3'UTR plasmid than in the cells cotransfected with NC and wild-type psi-CHECK2-3'UTR plasmid (0.21 ± 0.14 0.56 ± 0.1, < 0.01).@*CONCLUSIONS@#miR-122-5p expression is upregulated in melanoma tissues, indicating its involvement in the development of melanoma. miR-122-5p inhibits the proliferation of SK-MEL-110 and A-375 cells possibly by affecting the cycle through NOP14.


Subject(s)
Humans , Apoptosis , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Luciferases , Metabolism , Melanoma , Metabolism , Pathology , MicroRNAs , Metabolism , Neoplasm Proteins , Metabolism , Nevus, Pigmented , Metabolism , Pathology , Nuclear Proteins , Metabolism , Skin Neoplasms , Metabolism , Pathology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL