Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Rev. colomb. quím. (Bogotá) ; 50(1): 20-39, ene.-abr. 2021. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1289322

ABSTRACT

Resumen En términos generales, es bien conocida la cualidad que poseen algunos polímeros de cambiar sus propiedades físicas y químicas finales mediante la adición de nanopartículas a la matriz polimérica para producir un material compuesto (MC). Esta investigación está basada en la obtención de un MC a partir de ácido poliláctico (PLA) y nanotubos de carbono de pared múltiple (NTCPM), muy empleado en la industria del envasado y dispositivos biomédicos, con el fin de ampliar su perfil industrial. Se desarrollaron cuatro mezclas de PLA y NTCPM, y se empleó polietilenglicol (PEG) como plastificante. Se evaluaron sus propiedades morfológicas, térmicas, mecánicas, termo-mecánicas, espectroscópicas, ángulo de contacto y cristalográficas. Se observó que los MCs presentaron degradación térmica a temperaturas inferiores a la matriz sin NTCPM, así como un aumento en el módulo de flexión y tensión en algunas de las muestras. Así mismo, se observó que los NTCPM pueden aumentar la cristalinidad del material y que, en algunos casos, se incrementa su rigidez, actuando como un aditivo útil para aplicaciones de mayor esfuerzo mecánico que la matriz. Del efecto de agregar PEG en los MC, se determinó que los NTCPM no restringen la movilidad de las cadenas poliméricas y se da un efecto plastificante, lo que permite mayor movilidad de la zona amorfa de las cadenas de polímero, como indica la literatura consultada. Finalmente, se concluyó que a mayores contenidos de NTCPM, se generan mejores valores en el módulo de flexión, esfuerzo máximo de flexión, módulo de elongación, esfuerzo de carga máxima y esfuerzo de ruptura, entre otras propiedades evaluadas.


Abstract The quality of some polymers to change their final physical and chemical properties by adding nanoparticles to the polymer matrix to produce a composite material (MC) is well known. This research is based on obtaining a MC from polylactic acid (PLA) and multi-walled carbon nanotubes (CNTMW), widely used in the packaging industry and biomedical devices, in order to expand its industrial profile. Four mixtures of PLA and CNTMW were developed, and polyethylene glycol (PEG) was used as a plasticizer. Their morphological, thermal, mechanical, thermo-mechanical, spectroscopic, contact angle, and crystallographic properties were evaluated. It was observed that the composites showed thermal degradation at temperatures below the matrix without CNTMW, as well as an increase in the modulus of flexion and tension in some of the samples. Likewise, it was observed that the CNTMW can increase the crystallinity of the material and that, in some cases, its rigidity is increased, acting as a useful additive for applications of greater mechanical stress than the matrix. From the effect of adding PEG in the composites, the CNTMW do not restrict the mobility of the polymer chains and a plasticizing effect occurs, which allows greater mobility of the amorphous zone of the polymer chains. In general terms, it was concluded that at higher CNTMW contents, better values were generated in the flexural modulus, maximum flexural stress, elongation modulus, maximum load stress and rupture stress, among other evaluated properties.


Resumo Alguns polímeros têm a propriedade de alterar suas propriedades físicas e químicas finais, adicionando nanopartículas à matriz polimérica para produzir um composto. Esta pesquisa baseia-se na obtenção de composto partir de ácido polilático (PLA) e nanotubos de carbono de paredes múltiplas (MWCNT), amplamente utilizado na indústria de embalagens e dispositivos biomédicos, a fim de expandir seu perfil industrial. Foram desenvolvidas quatro misturas de PLA e MWCNT e o polietilenoglicol (PEG) foi usado como plastificante. Foram avaliadas suas propriedades morfológicas, térmicas, mecânicas, termo-mecânicas, espectroscópicas, ângulo de contato e cristalográficas. Observou-se que os compostos apresentaram degradação térmica em temperaturas abaixo da matriz sem MWCNT, além de aumento no módulo de flexão e tensão em algumas das amostras. Da mesma forma, observou-se que o MWCNT pode aumentar a cristalinidade do material e que, em alguns casos, sua rigidez é aumentada, atuando como um aditivo útil para aplicações de maior tensão mecânica que a matriz. A partir do efeito da adição de PEG nos compostos, determinou-se que o MWCNT não restringe a mobilidade das cadeias poliméricas e ocorre um efeito plastificante, que permite maior mobilidade da zona amorfa das cadeias poliméricas. Em termos gerais, concluiu-se que, com maiores teores de MWCNT, melhores valores foram gerados no módulo de flexão, tensão máxima de flexão, módulo de alongamento, tensão de carga máxima e tensão de ruptura, entre outras propriedades avaliadas.

2.
Article in Portuguese | LILACS-Express | LILACS | ID: lil-737335

ABSTRACT

As nanopartículas de sais de prata são compostos muito utilizados nas indústrias farmacêuticas e de cosméticos, além de seu uso hospitalar. Sua utilização, tanto em produtos comerciais como na medicina, e sua importante correlação com a saúde pública e meio ambiente despertaram grande interesse em ações diretas e indiretas sobre o ser humano. Particularmente as nanopartículas de sais de prata têm sido muito utilizadas como antimicrobianos na desinfecção de materiais hospitalares, desodorantes, materiais dentários, em próteses internas e cateteres intravenosos, e tem possibilitado a contaminação humana e ambiental. Seus efeitos, concentrações perigosas e valores aceitáveis como contaminante demandam estudos. Sua instabilidade frente a interações com outros produtos as torna de grande interesse em relação à contaminação e persistência no ambiente. Diversos trabalhos produzidos em nossos laboratórios demonstram a atividade desreguladora endócrina de vários produtos químicos contaminantes ambientais e prejudiciais à saúde humana. Deste modo buscou-se um levantamento das principais formas de uso, seus riscos e efeitos toxicológicos para a saúde pública e meio ambiente.


Nanoparticles of silver salts are compounds widely usedin the manufacture of pharmaceuticals and cosmetics, aswell as in hospitals. Their presence, both in commercialproducts and in medicine, and their strong correlationwith public health and environmental impact, havearoused great interest in direct and indirect actions onthe human being. Nanoparticles of silver salts have beenwidely used as antimicrobial agents, in the disinfectionof hospital supplies, deodorants, dental materials, ininternal prostheses and intravenous catheters and haveled to human and environmental contamination. Theireffects on the environment, dangerous concentrationsandacceptable levels of contamination demand study.Instability in their interactions with other productsmakes them of great interest in terms of contaminationand persistence in the environment. Several studiesperformed in our laboratories demonstrate theendocrine disrupting activity of various chemicalcontaminants, with environmental risk to humanhealth. Thus, our aim here was to survey the main usesof silver salt nanoparticles, their toxicological effectsand risks to public health and the environment.

3.
Rev. ing. bioméd ; 7(14): 11-23, jul.-dic. 2013. graf
Article in Spanish | LILACS | ID: lil-769137

ABSTRACT

La ingeniería de tejidos es un área que ha venido creciendo desde los últimos treinta años con diferentes aplicaciones en piel, hueso, tejido neural, tejido cardiovascular, entre otras. Una de las áreas más trabajadas y de mayores aplicaciones es la relacionada con el tejido de la piel, con importantes avances en el desarrollo de sustitutos. En este trabajo se hace una revisión sobre los biomateriales más usados para desarrollos en el área de ingeniería de tejidos con aplicaciones específicas al tejido de piel. La información obtenida fue clasificada de acuerdo a los biomateriales más usados de origen natural o sintético, y de acuerdo a sus aplicaciones como sustitutos dérmicos, epidérmicos o dermo-epidérmicos. A su vez las ventajas y desventajas de su implementación in vivo o clínica fueron consideradas. Adicionalmente, se presenta una introducción al uso de los nanomateriales en diferentes áreas relacionadas con la ingeniería de tejidos. Según esta revisión, la biocompatibilidad de los materiales naturales es adecuada, al igual que la recepción al momento del injerto, pero su resistencia mecánica es baja. Los materiales sintéticos, por su parte, presentan más alta resistencia mecánica y siguen siendo objeto de investigación para mejorar su biocompatibilidad y controlar su degradación. Dentro del estudio se presentaron los nanomateriales como un área de amplio desarrollo y de alta proyección para su aplicación en ingeniería tisular.


Tissue engineering is a research field that has grown over the last thirty years with different applications in skin, bone, neural tissue and cardiovascular tissue, among others. One of the most studied and promising application relates to the engineering of skin tissue, which has led to important advances in the development of skin substitutes. This work reviews the most used biomaterials for applications in the field of skin tissue engineering. The reviewed literature was classified according to the most used natural or synthetic biomaterials and according to their application as dermal, epidermal, or dermal-epidermal substitutes. At the same time, advantages and disadvantages of their in vivo or clinical implementation were considered. Based on this literature review, the biocompatibility of natural materials is appropriate, as well as their grafting efficiency, but their mechanical strength is low. Synthetic materials, in contrast, show higher mechanical strength and are subject of investigations that seek to improve their biocompatibility and biodegradability. This review also showed that the use of nanomaterials is a very promising research area with excellent prospects for applications in tissue engineering.


Engenharia de tecidos é uma área que tem crescido desde os últimos trinta anos, com diferentes aplicações em pele, osso, tecido neural, tecido cardiovascular, entre outros. Uma das áreas de aplicação mais elaborados e maiores está relacionada com o tecido da pele, com um progresso significativo no desenvolvimento de substitutos. Este trabalho apresenta uma revisão dos biomateriais mais utilizados para desenvolvimentos na área da engenharia de tecidos com aplicações específicas para o tecido da pele. As informações obtidas foram classificadas de acordo aos biomateriais mais utilizados de origem natural ou sintética, e de acordo às suas aplicações como substitutos de pele, epidérmica ou dermo-epidérmica. Por sua vez, as vantagens e desvantagens da sua implementação in vivo ou clínica foram considerados. Além disso uma introdução ao uso de nanomateriais em diferentes áreas relacionadas com a engenharia de tecidos é apresentado. De acordo com esta revisão, a biocompatibilidade de materiais naturais é adequado, como o tempo de recepção da enxertia, mas a sua resistência mecânica é baixa. Os materiais sintéticos, por sua vez, tem alta resistência mecânica e ainda estão sob investigação para melhorar a sua biocompatibilidade e controle de degradação. Dentro deste estudo apresentaram-se os nanomateriais como um área de desenvolvimento global e alta projeção para uso em engenharia de tecidos.

SELECTION OF CITATIONS
SEARCH DETAIL