Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Korean Neurosurgical Society ; : 456-464, 2005.
Article in English | WPRIM | ID: wpr-215201

ABSTRACT

OBJECTIVE: The authors investigated whether rotenone induces cellular death also in non-dopaminergic neurons and high concentration of potassium ion can show protective effect for non-dopaminergic neuron in case of rotenone-induced cytotoxicity. METHODS: Neuro 2A cells was treated with rotenone, and their survival as well as cell death mechanism was estimated using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium(MTT) assay, Lactate dehydrogenase(LDH) release assay, fluorescence microscopy, and agarose gel electrophoresis. The changes in rotenone-treated cells was also studied after co-treatment of 50mM KCl. And the protective effect of KCl was evaluated by mitochondrial membrane potential assay and compared with the effects of various antioxidants. RESULTS: Neuro 2A cells treated with rotenone underwent apoptotic death showing chromosome condensation and fragmentation as well as DNA laddering. Co-incubation of neuro 2A cells with 50mM KCl prevented it from the cytotoxicity induced by rotenone. Intracellular accumulation of reactive oxygen species(ROS) resulting by rotenone were significantly reduced by 50mM KCl. Potassium exhibited significantly similar potency compared to the antioxidants. CONCLUSION: The present findings showed that potassium attenuated rotenone-induced cytotoxicity, intracellular accumulation of ROS, and fragmentation of DNA in Neuro 2A cells. These findings suggest the therapeutic potential of potassium ion in neuronal apoptosis, but the practical application of high concentration of potassium ion remains to be settled.


Subject(s)
Antioxidants , Apoptosis , Cell Death , DNA , Electrophoresis, Agar Gel , Lactic Acid , Membrane Potential, Mitochondrial , Microscopy, Fluorescence , Neurons , Oxygen , Potassium , Rotenone
SELECTION OF CITATIONS
SEARCH DETAIL